留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

磁共振成像纳米分子探针透明质酸-Gd2O3@MSN对动脉粥样硬化的靶向识别

马瑞繁 成佳宁 郝利国 李忠涛 尹强强 胡海峰 王余广

马瑞繁, 成佳宁, 郝利国, 李忠涛, 尹强强, 胡海峰, 王余广. 磁共振成像纳米分子探针透明质酸-Gd2O3@MSN对动脉粥样硬化的靶向识别[J]. 分子影像学杂志, 2023, 46(4): 583-590. doi: 10.12122/j.issn.1674-4500.2023.04.02
引用本文: 马瑞繁, 成佳宁, 郝利国, 李忠涛, 尹强强, 胡海峰, 王余广. 磁共振成像纳米分子探针透明质酸-Gd2O3@MSN对动脉粥样硬化的靶向识别[J]. 分子影像学杂志, 2023, 46(4): 583-590. doi: 10.12122/j.issn.1674-4500.2023.04.02
MA Ruifan, CHENG Jianing, HAO Liguo, LI Zhongtao, YIN Qiangqiang, HU Haifeng, WANG Yuguang. Hyaluronic acid-Gd2O3@MSN, nanoparticle probe of MRI for targeted identification of atherosclerosis[J]. Journal of Molecular Imaging, 2023, 46(4): 583-590. doi: 10.12122/j.issn.1674-4500.2023.04.02
Citation: MA Ruifan, CHENG Jianing, HAO Liguo, LI Zhongtao, YIN Qiangqiang, HU Haifeng, WANG Yuguang. Hyaluronic acid-Gd2O3@MSN, nanoparticle probe of MRI for targeted identification of atherosclerosis[J]. Journal of Molecular Imaging, 2023, 46(4): 583-590. doi: 10.12122/j.issn.1674-4500.2023.04.02

磁共振成像纳米分子探针透明质酸-Gd2O3@MSN对动脉粥样硬化的靶向识别

doi: 10.12122/j.issn.1674-4500.2023.04.02
基金项目: 

齐齐哈尔医学院研究生创新基金 QYYCX2022-12

齐齐哈尔医学院临床科研基金 QMSI2019L-14

详细信息
    作者简介:

    马瑞繁,在读硕士研究生,E-mail: 971064529@qq.com

    通讯作者:

    王余广,主任医师,E-mail: 84535929@qq.com

Hyaluronic acid-Gd2O3@MSN, nanoparticle probe of MRI for targeted identification of atherosclerosis

  • 摘要:   目的  探究合成透明质酸(HA)修饰的介孔二氧化硅MR纳米探针HA-Gd2O3@MSN的性能以及成像特点,为动脉粥样硬化疾病提供新的检查技术手段。  方法  以CTAB为模板,正硅酸四乙酯和十六烷基三甲基溴化铵在碱性条件下制备成MSN,滴加GdCl36H2O变成Gd2O3@MSN,在600℃下煅烧2 h去除十六烷基三甲基溴化铵模板,最后制备成分子探针Gd2O3@MSN,再通过酰胺缩合制备成HA-Gd2O3@MSN。运用透射电镜观察其形貌特征,动态光散射法检测其水合粒径和Zeta电位。运用3.0T MR观察其成像效果,并利用ICP-MS数据分析探针的弛豫率。  结果  合成的探针水动力尺寸为223.5±10.5 nm,Zeta电位为-13.04 mV,弛豫率为11.023 mmol· L-1· s-1);随着分子探针浓度逐渐升高,T1信号也随之增强。体外细胞试验研究显示透明质酸-Gd2O3@MSN以HA依赖的方式靶向巨噬细胞表面受体CD44。在细胞毒性试验中发现HA包被的纳米探针毒性较小。  结论  HA修饰的介孔二氧化硅MR纳米探针HA-Gd2O3@MSN T1弛豫率高,细胞毒性小,靶向效果好,具有较好的MR成像增强效果,为进一步早期识别动脉粥样硬化斑块奠定基础。

     

  • 图  1  HA-Gd2O3@MSN的合成示意图

    Figure  1.  Schematic diagram of the synthesis of HA-Gd2O3@MSN

    图  2  纳米探针的实物照片及透射电子显微镜图像

    Figure  2.  Physical photograph of the nanoprobe and transmission electron microscope imag.

    A: HA-Gd2O3@MSN; B: TEM image of HA-Gd2O3@MSN.

    图  3  纳米探针的水合粒径及Zeta表面电位

    Figure  3.  Hydrated particle size and Zeta surface potential of nanoprobes.

    A: Hydration particle size of HA-Gd2O3@MSN; B: Zeta potential of HA-Gd2O3@MSN.

    图  4  纳米探针的高角环形暗场扫描透射及元素mapping分析

    Figure  4.  High-angle annular dark-field scanning transmission and elemental mapping analysis of nanoprobes.

    A: STEM-HAADF analysis of HA-Gd2O3@MSN; B: Mapping analysis of element Gd; C: Mapping analysis of element Si; D: Mapping analysis of element O; E: Merged image of mapping analysis of elements Gd, Si and O.

    图  5  纳米探针的氮气吸附等温线和孔径分布图

    Figure  5.  Nitrogen adsorption isotherm and pore size distribution of nanoprobes.

    A: BET nitrogen adsorption isotherm; B: Distribution of BJH pore diameters.

    图  6  纳米探针的磁共振成像性能

    Figure  6.  Magnetic resonance imaging properties of nanoprobes.

    A: Magnetic resonance T1-weighted imaging results. The intensities of MR images increase with the incremental increase of the concentration of Gd3+; B: T1 relaxation rate (r1) of nanoprobes.

    图  7  纳米探针的细胞毒性

    Figure  7.  Cytotoxicity of synthesized HA-Gd2O3@MSN nanoprobes.

    图  8  不同纳米探针与RAW264.7巨噬细胞的共聚焦显微成像图

    Figure  8.  Laser scanning confocal images of RAW264.7 macrophages with different nanoprobes.

  • [1] Htun NM, Chen YC, Lim B, et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques[J]. Nat Commun, 2017, 8: 75. doi: 10.1038/s41467-017-00138-x
    [2] Zhang J, Li C, Zhang X, et al. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles[J]. Biomaterials, 2015, 42: 103-11. doi: 10.1016/j.biomaterials.2014.11.053
    [3] Lairez O, Fayad ZA. Imaging of atherosclerosis: can molecular imaging do more?[J]. Arch Cardiovasc Dis, 2013, 106(11): 551-3. doi: 10.1016/j.acvd.2013.06.001
    [4] Wolf KJ, Kumar S. Hyaluronic acid: incorporating the bio into the material[J]. ACS Biomater Sci Eng, 2019, 5(8): 3753-65. doi: 10.1021/acsbiomaterials.8b01268
    [5] Goh EJ, Kim KS, Kim YR, et al. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots[J]. Biomacromolecules, 2012, 13(8): 2554-61. doi: 10.1021/bm300796q
    [6] Lee MY, Yang JA, Jung HS, et al. Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection[J]. ACS Nano, 2012, 6(11): 9522-31. doi: 10.1021/nn302538y
    [7] Hossaini NS, Rashidijahanabad Z, Ramadan S, et al. Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles[J]. Nanoscale, 2020, 12(17): 9541-56. doi: 10.1039/D0NR00308E
    [8] Hou XY, Lin H, Zhou XD, et al. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis[J]. Carbohydr Polym, 2020, 232: 115787. doi: 10.1016/j.carbpol.2019.115787
    [9] 梁治平, 曾旭文. Gd(Ⅲ)类分子探针在MRI分子影像学中的研究进展[J]. 临床放射学杂志, 2006, 25(8): 782-4. doi: 10.3969/j.issn.1001-9324.2006.08.022
    [10] Kilpelainen M, Riikonen J, Vlasova MA, et al. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles[J]. J Control Release, 2009, 137(2): 166-70. doi: 10.1016/j.jconrel.2009.03.017
    [11] Yang PP, Gai SL, Lin J. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chem Soc Rev, 2012, 41(9): 3679- 98. doi: 10.1039/c2cs15308d
    [12] 朱飞鹏. 基于介孔二氧化硅双模态多功能探针的制备及实验研究[D]. 广州: 南方医科大学, 2013.
    [13] He KW, Li JJ, Shen YX, et al. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement[J]. J Mater Chem B, 2019, 7(43): 6840-54. doi: 10.1039/C9TB01654F
    [14] Shatadal G, Sayanta D, Abhijit S, et al. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency[J]. Colloids Surf B Biointerfaces, 2021, 197: 111404. doi: 10.1016/j.colsurfb.2020.111404
    [15] Dweck MR, Aikawa E, Newby DE, et al. Noninvasive molecular imaging of disease activity in atherosclerosis[J]. Circ Res, 2016, 119(2): 330-40. doi: 10.1161/CIRCRESAHA.116.307971
    [16] Yamazaki T, Nohara R, Daida H, et al. Intensive lipid-lowering therapy for slowing progression as well as inducing regression of atherosclerosis in Japanese patients[J]. Int Heart J, 2013, 54(1): 33- 9. doi: 10.1536/ihj.54.33
    [17] 田泾, 高申. 基于疾病微环境靶向的精准纳米靶向技术研究[J]. 医学研究生学报, 2019, 32(5): 479-83. doi: 10.16571/j.cnki.1008-8199.2019.05.006
    [18] 谷弘谦, 陈颂, 尹强强, 等. 以Cy5.5为包裹的团簇磁共振分子探针G4-Gd2O3-Cy5.5的构建与表征[J]. 临床放射学杂志, 2021, 40(10): 2016-20. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202110036.htm
    [19] Li ZT, Guo J, Zhang MM, et al. Gadolinium-coated mesoporous silica nanoparticle for magnetic resonance imaging[J]. Front Chem, 2022, 10: 837032. doi: 10.3389/fchem.2022.837032
    [20] 李尚基. 基于氨基化介孔二氧化硅/生物大分子药物控释系统的构建[D]. 常州: 常州大学, 2021.
    [21] 孙凯. 基于介孔二氧化硅靶向药物递送系统的构建及其抗肿瘤活性的研究[D]. 南京: 东南大学, 2019.
    [22] Song KC, Tang Z, Song ZL, et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading simvastatin for targeted therapy of atherosclerosis[J]. Pharmaceutics, 2022, 14(6): 1265. doi: 10.3390/pharmaceutics14061265
    [23] 李忠涛, 陈颂, 郝利国, 等. 以羧基化石墨烯量子点为载体的荧光-磁共振双模态分子探针的制备及体外研究[J]. 中国医疗设备, 2022, 37 (5): 64-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202205014.htm
    [24] Ahmad MW, Xu WL, Kim SJ, et al. Potential dual imaging nanoparticle: Gd2O3 nanoparticle[J]. Sci Rep, 2015, 5: 8549. doi: 10.1038/srep08549
    [25] 张亚力. 基于整合素αvβ3的磁共振/荧光双模态分子探针cRGD-GdCy5.5的制备及其靶向性研究[D]. 南宁: 广西医科大学, 2019.
    [26] Liu S, Zhao Y, Shen ML, et al. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis[J]. J Mater Chem B, 2022, 10 (4): 562-70. doi: 10.1039/D1TB02000E
  • 加载中
图(8)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  140
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回