留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

同源靶向性多模态成像纳米探针在光热-化疗协同治疗中的应用

李雪铭 王芝娜 罗明芳 吕奕洁 阚俊楠 孙振博 李涵 宋军影 王落箫 李玉萍 刘岩 李祥林

李雪铭, 王芝娜, 罗明芳, 吕奕洁, 阚俊楠, 孙振博, 李涵, 宋军影, 王落箫, 李玉萍, 刘岩, 李祥林. 同源靶向性多模态成像纳米探针在光热-化疗协同治疗中的应用[J]. 分子影像学杂志, 2023, 46(2): 187-194. doi: 10.12122/j.issn.1674-4500.2023.02.01
引用本文: 李雪铭, 王芝娜, 罗明芳, 吕奕洁, 阚俊楠, 孙振博, 李涵, 宋军影, 王落箫, 李玉萍, 刘岩, 李祥林. 同源靶向性多模态成像纳米探针在光热-化疗协同治疗中的应用[J]. 分子影像学杂志, 2023, 46(2): 187-194. doi: 10.12122/j.issn.1674-4500.2023.02.01
LI Xueming, WANG Zhina, LUO Mingfang, LÜ Yijie, KAN Junnan, SUN Zhenbo, LI Han, SONG Junying, WANG Luoxiao, LI Yuping, LIU Yan, LI Xianglin. In vitro study of homologous targeted multimodal imaging nanoprobes in synergistic photothermal-chemotherapy treatment[J]. Journal of Molecular Imaging, 2023, 46(2): 187-194. doi: 10.12122/j.issn.1674-4500.2023.02.01
Citation: LI Xueming, WANG Zhina, LUO Mingfang, LÜ Yijie, KAN Junnan, SUN Zhenbo, LI Han, SONG Junying, WANG Luoxiao, LI Yuping, LIU Yan, LI Xianglin. In vitro study of homologous targeted multimodal imaging nanoprobes in synergistic photothermal-chemotherapy treatment[J]. Journal of Molecular Imaging, 2023, 46(2): 187-194. doi: 10.12122/j.issn.1674-4500.2023.02.01

同源靶向性多模态成像纳米探针在光热-化疗协同治疗中的应用

doi: 10.12122/j.issn.1674-4500.2023.02.01
基金项目: 国家自然科学基金(11805247);山东省大学生创新创业训练计划(202110440090)
详细信息
    作者简介:

    李雪铭,在读本科生,E-mail: lixueminghhhhh@163.com

    通讯作者:

    李祥林,博士,副教授,E-mail: xlli@bzmc.edu.cn

In vitro study of homologous targeted multimodal imaging nanoprobes in synergistic photothermal-chemotherapy treatment

Funds: Supported by National Natural Science Foundation of China (11805247)
  • 摘要:   目的  制备同源靶向性诊疗一体化纳米探针MnO2@DOX@ICG@CM(MDIC),观察MDIC纳米探针的同源靶向能力,探讨其多模态成像价值以及光热联合化疗的协同治疗作用。  方法  通过化学裂解和超声匀浆法获取乳腺癌4T1细胞膜,以脂质体挤压法制备细胞膜包被的同时载有化疗药阿霉素和光敏剂吲哚菁绿的MnO2纳米探针;对MDIC的外观形态、粒径和表面电位等性质进行基本表征,并研究其光声成像及磁共振成像的能力;观察不同浓度的MDIC纳米探针的光热升温性能,评估其对4T1细胞的光热-化疗协同治疗的抗肿瘤效果。  结果  成功制备MDIC纳米探针,呈花状结构,平均粒径为183.3 nm,表面电位为-20.6±0.77 mV。透射电镜下观察到细胞膜成功包被;MDIC经激光照射后,溶液温度随着纳米探针浓度的升高而增加,具有较好的光热升温效果;光声和磁共振成像结果显示MDIC具有良好的成像对比能力;激光共聚焦显微镜观察到MDIC具有良好的同源靶向性;细胞毒性实验结果显示光热-化疗协同治疗具有更好的癌细胞杀伤作用。  结论  本研究成功制备了一种同源靶向性的光声/磁共振多模态成像对比探针MDIC,该探针具有良好的光热升温效能和体外抗肿瘤效果,并且可以显著增强光声成像效果和磁共振T1增强效果。

     

  • 图  1  MDIC制备示意图

    A~C: 分别为MnO2、MDI、MDIC的TEM图; D: 动态光散射图; E: 表面电位图; F: 紫外吸收光谱图.

    Figure  1.  Schematic diagram of preparation of MDIC.

    图  2  不同纳米粒子的基本表征

    Figure  2.  Basic characterization of different nanoparticles.

    图  3  MDIC纳米探针的光声成像性能

    A: 不同浓度纳米探针的光声信号强度值(750 nm); B: MDIC与不同浓度H2O2反应后的光声信号强度值(750 nm); C: 不同浓度纳米探针的光声信号强度值(875 nm); D: MDIC与不同浓度H2O2反应后的光声信号强度值(875 nm); EF: 不同pH值、H2O2浓度下MDIC的不同激发波长光声信号谱图.

    Figure  3.  Photoacoustic imaging performance of MDIC nanoprobes.

    图  4  MDIC分子探针磁共振成像性能

    A:不同浓度MDIC的体外磁共振成像图; B: 体外纵向弛豫率(r1)比较.

    Figure  4.  Magnetic resonance imaging properties of MDIC molecular probes.

    图  5  MDIC分子探针的光热升温性能评估

    A: 不同浓度MDIC在808 nm激光下(1.5 W/cm2)照射5 min后的升温曲线(MnO2: 6.25 μg/mL、12.5 μg/mL、25 μg/mL、50 μg/mL和100 μg/mL); B: 不同浓度MDIC经808 nm激光照射后的热成像图.

    Figure  5.  Evaluation of photothermal performance of MDIC molecular probe

    图  6  激光共聚焦显微镜观察靶向纳米探针靶向能力

    A: 红色荧光染料DOX标记的MDIC-4T1; B: 蓝色荧光染料DAPI标记的4T1细胞; C: 靶向组纳米粒靶向情况; D: 红色荧光染料DOX标记的MDIC-Hela; E: 蓝色荧光染料DAPI标记的4T1细胞; F: 非靶向组纳米粒靶向情况. 比例尺:20 μm.

    Figure  6.  The targeting ability of the targeted nanoprobe was observed by laser confocal microscopy.

    图  7  MDIC纳米探针的同源靶向性、细胞毒性以及联合治疗能力

    A:不同细胞内DOX(10 μg/mL)的荧光强度图; B: 不同DOX浓度MDIC下4T1细胞的存活率柱形图; C: 不同ICG浓度MDIC下4T1细胞给予或未给予激光照射后的细胞存活率(WL=808 nm,0.15 W/cm2,10 min).

    Figure  7.  Homologous targeting, cytotoxicity and combined therapeutic ability of MDIC nanoprobes.

  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
    [2] 王胤杰. 神经肽Y纳米药物递送系统在乳腺癌靶向治疗中的研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
    [3] Liu WL, Zou MZ, Liu T, et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells[J]. Adv Mater, 2019, 31(18): e1900499. doi: 10.1002/adma.201900499
    [4] 冯源, 兰晓莉, 张永学. 分子影像学用于早期诊断乳腺癌及其分子分型进展[J]. 中国医学影像技术, 2022, 38(7): 1086-9. doi: 10.13929/j.issn.1003-3289.2022.07.028
    [5] Cai XX, Zhu QX, Zeng Y, et al. Manganese oxide nanoparticles As MRI contrast agents in tumor multimodal imaging and therapy[J]. Int J Nanomed, 2019, 14: 8321-44. doi: 10.2147/IJN.S218085
    [6] Sun YX, Zhao DY, Wang G, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development[J]. Acta Pharm Sin B, 2020, 10(8): 1382-96. doi: 10.1016/j.apsb.2020.01.004
    [7] Tang QY, Cheng ZJ, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10. doi: 10.1016/j.biomaterials.2019.03.005
    [8] 李博, 杨童, 刘锦, 等. 二氧化锰纳米材料在肿瘤诊疗领域的应用研究进展[J]. 山东化工, 2021, 50(18): 45-50. doi: 10.3969/j.issn.1008-021X.2021.18.016
    [9] Huang CL, Zhang ZM, Guo Q, et al. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy[J]. Adv Healthc Mater, 2019, 8(19): e1900840. doi: 10.1002/adhm.201900840
    [10] Hu CY, Fan F, Qin Y, et al. Redox-sensitive folate-conjugated polymeric nanoparticles for combined chemotherapy and photothermal therapy against breast cancer[J]. J Biomed Nanotechnol, 2018, 14(12): 2018-30. doi: 10.1166/jbn.2018.2647
    [11] Qing WX, Xing XY, Feng DF, et al. Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy[J]. Photodiagnosis Photodyn Ther, 2021, 36: 102521. doi: 10.1016/j.pdpdt.2021.102521
    [12] Li TT, Geng Y, Zhang HX, et al. A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer[J]. Expert Opin Drug Deliv, 2020, 17(5): 725-33. doi: 10.1080/17425247.2020.1736033
    [13] Yu C, Liu CQ, Wang SC, et al. Hydroxyethyl starch-based nanoparticles featured with redox-sensitivity and chemo-photothermal therapy for synergized tumor eradication[J]. Cancers, 2019, 11(2): 207. doi: 10.3390/cancers11020207
    [14] 马会松. 自组装白蛋白钠米给药系统用于乳腺癌的化疗-光热联合治疗研究[D]. 杭州: 浙江大学, 2021.
    [15] Zhao Y, Zhou YX, Wang DS, et al. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d, l-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor[J]. Acta Biomater, 2015, 17: 182-92. doi: 10.1016/j.actbio.2015.01.010
    [16] 任雅静, 李慧, 倪频越, 等. 基于细胞膜仿生策略的纳米颗粒在肿瘤治疗中的应用[J]. 自然杂志, 2022, 44(3): 241-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202203008.htm
    [17] Zhu JY, Zheng DW, Zhang MK, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membrane[J]. Nano Lett, 2016, 16(9): 5895-901. doi: 10.1021/acs.nanolett.6b02786
    [18] Sun HP, Su JH, Meng QS, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors[J]. Adv Mater, 2016, 28(43): 9581-8. doi: 10.1002/adma.201602173
    [19] Zhang JW, Miao Y, Ni WF, et al. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2298-305. doi: 10.1080/21691401.2019.1622554
    [20] Zhang D, Ye ZJ, Wei L, et al. Cell membrane-coated porphyrin metal-organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39594-602. doi: 10.1021/acsami.9b14084
    [21] 杨瑞昊. 负载光敏剂吲哚菁绿和化疗药物阿霉素的多功能纳米平台在肿瘤联合治疗中的应用[D]. 重庆: 西南大学, 2020.
    [22] Ho CJH, Balasundaram G, Driessen W, et al. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging[J]. Sci Rep, 2014, 4: 5342. doi: 10.1038/srep05342
    [23] Liu C, Wang DP, Zhan Y, et al. Switchable photoacoustic imaging of glutathione using MnO2 nanotubes for cancer diagnosis[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44231-9. doi: 10.1021/acsami.8b14944
    [24] 周珠贤, 申有青, 赵宇亮. 抗肿瘤纳米药物递送系统的研究现状与展望[J]. 中国基础科学, 2022, 24(1): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB202201003.htm
    [25] Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours[J]. Nat Mater, 2020, 19(5): 566-75. doi: 10.1038/s41563-019-0566-2
    [26] 王立哲. 负载阿霉素的肿瘤靶向肽修饰的纳米凝胶对骨肉瘤的治疗作用[D]. 长春: 吉林大学, 2019.
    [27] 董优, 朱红, 汪小林, 等. 载阿霉素和吲哚菁绿混合胶束的制备及抗肿瘤活性评价[J]. 沈阳药科大学学报, 2022, 39(5): 513-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYD202205001.htm
    [28] 李长辉. 用光奏响生命之歌: 光声成像技术漫谈[J]. 激光与光电子学进展, 2022, 59(6): 100-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202206005.htm
    [29] Kajita H, Oh A, Urano M, et al. Photoacoustic lymphangiography[J]. J Surg Oncol, 2020, 121(1): 48-50.
    [30] Lv YJ, Kan JN, Luo MF, et al. Multifunctional nanosnowflakes for T1-T2 double-contrast enhanced MRI and PAI guided oxygen self-supplementing effective anti-tumor therapy[J]. Int J Nanomed, 2022, 17: 4619-38. doi: 10.2147/IJN.S379526
    [31] Luo MF, Lv YJ, Luo XR, et al. Developing smart nanoparticles responsive to the tumor micro-environment for enhanced synergism of thermo-chemotherapy with PA/MR bimodal imaging[J]. Front Bioeng Biotechnol, 2022, 10: 799610.
  • 加载中
图(7)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  129
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 网络出版日期:  2023-04-28
  • 刊出日期:  2023-03-20

目录

    /

    返回文章
    返回