[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
|
[2] |
王胤杰. 神经肽Y纳米药物递送系统在乳腺癌靶向治疗中的研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
|
[3] |
Liu WL, Zou MZ, Liu T, et al. Expandable immunotherapeutic nanoplatforms engineered from cytomembranes of hybrid cells derived from cancer and dendritic cells[J]. Adv Mater, 2019, 31(18): e1900499. doi: 10.1002/adma.201900499
|
[4] |
冯源, 兰晓莉, 张永学. 分子影像学用于早期诊断乳腺癌及其分子分型进展[J]. 中国医学影像技术, 2022, 38(7): 1086-9. doi: 10.13929/j.issn.1003-3289.2022.07.028
|
[5] |
Cai XX, Zhu QX, Zeng Y, et al. Manganese oxide nanoparticles As MRI contrast agents in tumor multimodal imaging and therapy[J]. Int J Nanomed, 2019, 14: 8321-44. doi: 10.2147/IJN.S218085
|
[6] |
Sun YX, Zhao DY, Wang G, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development[J]. Acta Pharm Sin B, 2020, 10(8): 1382-96. doi: 10.1016/j.apsb.2020.01.004
|
[7] |
Tang QY, Cheng ZJ, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10. doi: 10.1016/j.biomaterials.2019.03.005
|
[8] |
李博, 杨童, 刘锦, 等. 二氧化锰纳米材料在肿瘤诊疗领域的应用研究进展[J]. 山东化工, 2021, 50(18): 45-50. doi: 10.3969/j.issn.1008-021X.2021.18.016
|
[9] |
Huang CL, Zhang ZM, Guo Q, et al. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy[J]. Adv Healthc Mater, 2019, 8(19): e1900840. doi: 10.1002/adhm.201900840
|
[10] |
Hu CY, Fan F, Qin Y, et al. Redox-sensitive folate-conjugated polymeric nanoparticles for combined chemotherapy and photothermal therapy against breast cancer[J]. J Biomed Nanotechnol, 2018, 14(12): 2018-30. doi: 10.1166/jbn.2018.2647
|
[11] |
Qing WX, Xing XY, Feng DF, et al. Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy[J]. Photodiagnosis Photodyn Ther, 2021, 36: 102521. doi: 10.1016/j.pdpdt.2021.102521
|
[12] |
Li TT, Geng Y, Zhang HX, et al. A versatile nanoplatform for synergistic chemo-photothermal therapy and multimodal imaging against breast cancer[J]. Expert Opin Drug Deliv, 2020, 17(5): 725-33. doi: 10.1080/17425247.2020.1736033
|
[13] |
Yu C, Liu CQ, Wang SC, et al. Hydroxyethyl starch-based nanoparticles featured with redox-sensitivity and chemo-photothermal therapy for synergized tumor eradication[J]. Cancers, 2019, 11(2): 207. doi: 10.3390/cancers11020207
|
[14] |
马会松. 自组装白蛋白钠米给药系统用于乳腺癌的化疗-光热联合治疗研究[D]. 杭州: 浙江大学, 2021.
|
[15] |
Zhao Y, Zhou YX, Wang DS, et al. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d, l-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor[J]. Acta Biomater, 2015, 17: 182-92. doi: 10.1016/j.actbio.2015.01.010
|
[16] |
任雅静, 李慧, 倪频越, 等. 基于细胞膜仿生策略的纳米颗粒在肿瘤治疗中的应用[J]. 自然杂志, 2022, 44(3): 241-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202203008.htm
|
[17] |
Zhu JY, Zheng DW, Zhang MK, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membrane[J]. Nano Lett, 2016, 16(9): 5895-901. doi: 10.1021/acs.nanolett.6b02786
|
[18] |
Sun HP, Su JH, Meng QS, et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors[J]. Adv Mater, 2016, 28(43): 9581-8. doi: 10.1002/adma.201602173
|
[19] |
Zhang JW, Miao Y, Ni WF, et al. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2298-305. doi: 10.1080/21691401.2019.1622554
|
[20] |
Zhang D, Ye ZJ, Wei L, et al. Cell membrane-coated porphyrin metal-organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39594-602. doi: 10.1021/acsami.9b14084
|
[21] |
杨瑞昊. 负载光敏剂吲哚菁绿和化疗药物阿霉素的多功能纳米平台在肿瘤联合治疗中的应用[D]. 重庆: 西南大学, 2020.
|
[22] |
Ho CJH, Balasundaram G, Driessen W, et al. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging[J]. Sci Rep, 2014, 4: 5342. doi: 10.1038/srep05342
|
[23] |
Liu C, Wang DP, Zhan Y, et al. Switchable photoacoustic imaging of glutathione using MnO2 nanotubes for cancer diagnosis[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44231-9. doi: 10.1021/acsami.8b14944
|
[24] |
周珠贤, 申有青, 赵宇亮. 抗肿瘤纳米药物递送系统的研究现状与展望[J]. 中国基础科学, 2022, 24(1): 25-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB202201003.htm
|
[25] |
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours[J]. Nat Mater, 2020, 19(5): 566-75. doi: 10.1038/s41563-019-0566-2
|
[26] |
王立哲. 负载阿霉素的肿瘤靶向肽修饰的纳米凝胶对骨肉瘤的治疗作用[D]. 长春: 吉林大学, 2019.
|
[27] |
董优, 朱红, 汪小林, 等. 载阿霉素和吲哚菁绿混合胶束的制备及抗肿瘤活性评价[J]. 沈阳药科大学学报, 2022, 39(5): 513-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYD202205001.htm
|
[28] |
李长辉. 用光奏响生命之歌: 光声成像技术漫谈[J]. 激光与光电子学进展, 2022, 59(6): 100-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202206005.htm
|
[29] |
Kajita H, Oh A, Urano M, et al. Photoacoustic lymphangiography[J]. J Surg Oncol, 2020, 121(1): 48-50.
|
[30] |
Lv YJ, Kan JN, Luo MF, et al. Multifunctional nanosnowflakes for T1-T2 double-contrast enhanced MRI and PAI guided oxygen self-supplementing effective anti-tumor therapy[J]. Int J Nanomed, 2022, 17: 4619-38. doi: 10.2147/IJN.S379526
|
[31] |
Luo MF, Lv YJ, Luo XR, et al. Developing smart nanoparticles responsive to the tumor micro-environment for enhanced synergism of thermo-chemotherapy with PA/MR bimodal imaging[J]. Front Bioeng Biotechnol, 2022, 10: 799610.
|