Application of molecular targeting probe in thrombosis diagnosis
-
摘要: 血栓是导致缺血性中风、急性心肌梗死等多种缺血性疾病的主要元凶,每年造成大量的死亡和伤残,是严重危害人类生命健康的致死性病因之一。因此,高效准确的检测血栓在临床上具有很高的研究价值和重要意义。传统影像学技术如CT、MRI和超声等主要依赖非特异性的成像手段进行疾病的检查,不能显示分子改变和疾病的关系,易错过最佳的治疗时期。随着科技的发展和交叉学科的融合,影像学已进入分子影像的时代,即应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。分子靶向探针因其对靶点的高特异性,呈现高对比度的显影效果,加之可以实现多模态成像和诊疗一体化的潜力,有望在分子水平发现疾病,真正达到早期诊断和治疗。本综述将对目前已有的分子靶向探针在血栓诊断中的应用研究进行详细的归纳阐述。Abstract: Thrombosis is the culprit of ischemic stroke, acute myocardial infarction and other ischemic diseases, causing a large number of deaths and disability every year, which seriously endangers human health and safety. Therefore, efficient and accurate detection of thrombosis has high research value and significance in clinic. Traditional imaging techniques such as CT, MRI and ultrasound mainly rely on non- specific imaging methods for disease examination, which cannot show the relationship between molecular changes and disease, so it is easy to miss the best treatment period. With the development of science and technology and the integration of interdisciplinary disciplines, the era of molecular imaging is coming, that is, using imaging methods to conduct qualitative and quantitative research on biological processes at the cellular and molecular levels. Molecular targeted probes show high contrast effect because of their high specificity to the target. In addition, the potential to realize the multimodal imaging is expected to diagnose diseases at the molecular level and truly achieve early diagnosis and treatment. This review will summarize the application of molecular targeted probes in the diagnosis of thrombosis.
-
Key words:
- thrombosis /
- molecular probe /
- imaging /
- diagnosis
-
[1] Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture[J]. Circ Res, 2014, 114(12): 1852-66. doi: 10.1161/CIRCRESAHA.114.302721 [2] Furie B, Furie BC. Mechanisms of Thrombus formation[J]. N Engl J Med, 2008, 359(9): 938-49. doi: 10.1056/NEJMra0801082 [3] Collaborators GBD2DAI. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396 (10258): 1204-22. doi: 10.1016/S0140-6736(20)30925-9 [4] Liu SW, Li YC, Zeng XY, et al. Burden of cardiovascular diseases in China, 1990-2016[J]. JAMA Cardiol, 2019, 4(4): 342. doi: 10.1001/jamacardio.2019.0295 [5] Mackman N, Bergmeier W, Stouffer GA, et al. Therapeutic strategies for thrombosis: new targets and approaches[J]. Nat Rev Drug Discov, 2020, 19(5): 333-52. doi: 10.1038/s41573-020-0061-0 [6] 庞兴学, 王显. 血栓形成的过程与机制研究进展[J]. 医学综述, 2011, 17(11): 1613-6. doi: 10.3969/j.issn.1006-2084.2011.11.005 [7] 赵亚鹏, 金佩佩, 周同, 等. P-选择素及其细胞黏附与血栓形成[J]. 细胞生物学杂志, 2007, 29(1): 22-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZZ200701005.htm [8] Thomas MR, Storey RF. The role of platelets in inflammation[J]. Thromb Haemost, 2015, 114(3): 449-58. [9] Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities[J]. Nat Rev Drug Discov, 2010, 9(10): 804-20. doi: 10.1038/nrd3266 [10] Weissleder R. Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212(3): 609-14. doi: 10.1148/radiology.212.3.r99se18609 [11] Weissleder R, Mahmood U. Molecular imaging[J]. Radiology, 2001, 219(2): 316-33. doi: 10.1148/radiology.219.2.r01ma19316 [12] Lanza GM, Cui G, Schmieder AH, et al. An unmet clinical need: the history of Thrombus imaging[J]. J Nucl Cardiol, 2019, 26(3): 986-97. doi: 10.1007/s12350-017-0942-8 [13] 吴一田, 耿建华. PET-CT、SPECT及SPECT-CT受检者辐射水平及其生物效应研究进展[J]. 中国医学装备, 2017, 14(3): 141-6. doi: 10.3969/J.ISSN.1672-8270.2017.03.040 [14] 申强, 李建红, 王荣福. PET-MRI新技术应用进展[J]. 中国医学装备, 2017, 14(4): 7-12. doi: 10.3969/J.ISSN.1672-8270.2017.04.001 [15] Alt K, Paterson BM, Ardipradja K, et al. Single-chain antibody conjugated to a cage amine Chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets[J]. Mol Pharm, 2014, 11(8): 2855-63. doi: 10.1021/mp500209a [16] Ziegler M, Alt K, Paterson BM, et al. Highly sensitive detection of minimal cardiac ischemia using positron emission tomography imaging of activated platelets[J]. Sci Rep, 2016, 6: 38161. doi: 10.1038/srep38161 [17] Starmans LWE, van Duijnhoven SMJ, Rossin R, et al. SPECT imaging of fibrin using fibrin-binding peptides[J]. Contrast Media Mol Imaging, 2013, 8(3): 229-37. doi: 10.1002/cmmi.1521 [18] Rezaeianpour S, Bozorgi AH, Moghimi A, et al. Synthesis and biological evaluation of cyclic[99m Tc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with[99m Tc]-HYNIC-GPRPP[J]. Mol Imaging Biol, 2017, 19(2): 256-64. doi: 10.1007/s11307-016-1004-3 [19] Ciesienski KL, Yang Y, Ay I, et al. Fibrin-targeted PET probes for the detection of thrombi[J]. Mol Pharm, 2013, 10(3): 1100-10. doi: 10.1021/mp300610s [20] Ay I, Blasi F, Rietz TA, et al. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe[J]. Circ Cardiovasc Imaging, 2014, 7(4): 697-705. doi: 10.1161/CIRCIMAGING.113.001806 [21] Oliveira BL, Caravan P. Peptide-based fibrin-targeting probes for Thrombus imaging[J]. Dalton Trans, 2017, 46(42): 14488-508. doi: 10.1039/C7DT02634J [22] Blasi F, Oliveira BL, Rietz TA, et al. Effect of chelate type and radioisotope on the imaging efficacy of 4 fibrin-specific PET probes [J]. J Nucl Med, 2014, 55(7): 1157-63. doi: 10.2967/jnumed.113.136275 [23] Rouzet F, Bachelet-Violette L, Alsac JM, et al. Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich Thrombus and endothelial activation[J]. J Nucl Med, 2011, 52(9): 1433-40. doi: 10.2967/jnumed.110.085852 [24] Lohrke J, Siebeneicher H, Berger M, et al. 18F-GP1, a novel PET tracer designed for high-sensitivity, low-background detection of thrombi[J]. J Nucl Med, 2017, 58(7): 1094-9. doi: 10.2967/jnumed.116.188896 [25] Chae SY, Kwon TW, Jin S, et al. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis[J]. EJNMMI Res, 2019, 9(1): 3. doi: 10.1186/s13550-018-0471-8 [26] Kim C, Lee JS, Han Y, et al. Glycoprotein Ⅱb/Ⅲa receptor imaging with 18F-GP1 PET for acute venous thromboembolism: an open-label, nonrandomized, phase 1 study[J]. J Nucl Med, 2019, 60(2): 244-9. doi: 10.2967/jnumed.118.212084 [27] von zur Muhlen C, von Elverfeldt D, Moeller JA, et al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis[J]. Circulation, 2008, 118(3): 258-67. doi: 10.1161/CIRCULATIONAHA.107.753657 [28] Chaubet F, Bertholon I, Serfaty JM, et al. A new macromolecular paramagnetic MR contrast agent binds to activated human platelets [J]. Contrast Media Mol Imaging, 2007, 2(4): 178-88. doi: 10.1002/cmmi.144 [29] Overoye-Chan K, Koerner S, Looby RJ, et al. EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of Thrombus[J]. J Am Chem Soc, 2008, 130(18): 6025-39. doi: 10.1021/ja800834y [30] Loving GS, Caravan P. Activation and retention: a magnetic resonance probe for the detection of acute thrombosis[J]. Angew Chem Int Ed Engl, 2014, 53(4): 1140-3. doi: 10.1002/anie.201308607 [31] Wang XF, Jin PP, Zhou T, et al. MR molecular imaging of Thrombus: development and application of a Gd-based novel contrast agent targeting to P-selectin[J]. Clin Appl Thromb Hemost, 2010, 16(2): 177-83. doi: 10.1177/1076029608330470 [32] Liu J, Xu J, Zhou J, et al. Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis[J]. Int J Nanomedicine, 2017, 12(1): 1113-26. [33] Wang XW, Gkanatsas Y, Palasubramaniam J, et al. Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis[J]. Theranostics, 2016, 6(5): 726-38. doi: 10.7150/thno.14514 [34] de Saint Victor M, Crake C, Coussios CC, et al. Properties, charac-teristics and applications of microbubbles for sonothrombolysis[J]. Expert Opin Drug Deliv, 2014, 11(2): 187-209. doi: 10.1517/17425247.2014.868434 [35] Unger E, Porter T, Lindner J, et al. Cardiovascular drug delivery with ultrasound and microbubbles[J]. Adv Drug Deliv Rev, 2014, 72(1): 110-26. [36] Li B, Aid-Launais R, Labour MN, et al. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in Thrombus[J]. Biomaterials, 2019, 194: 139-50. doi: 10.1016/j.biomaterials.2018.12.023 [37] Uppal R, Catana C, Ay I, et al. Bimodal Thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe: feasibility study in rat model[J]. Radiology, 2011, 258(3): 812-20. doi: 10.1148/radiol.10100881 [38] Izquierdo-Garcia D, Désogère P, Philip AL, et al. Detection and characterization of thrombosis in humans using fibrin-targeted positron emission tomography and magnetic resonance[J]. JACC Cardiovasc Imaging, 2021. DOI: 10.1016/j.jcmg.2021.08.009. [39] 张睿, 杨萌, 姜玉新. 光声成像技术及其临床应用[J]. 协和医学杂志, 2019, 10(4): 381-6. doi: 10.3969/j.issn.1674-9081.2019.04.014 [40] Li B, Fu C, Ma GS, et al. Photoacoustic imaging: a novel tool for detecting carotid artery thrombosis in mice[J]. J Vasc Res, 2017, 54 (4): 217-25. doi: 10.1159/000477631 [41] Zhang Y, Zhong YX, Ye M, et al. Polydopamine-modified dual-ligand nanoparticles as highly effective and targeted magnetic resonance/photoacoustic dual-modality Thrombus imaging agents [J]. Int J Nanomedicine, 2019, 14: 7155-71. doi: 10.2147/IJN.S216603 [42] Li YH, Xin FY, Hu JM, et al. Functionalization of NaGdF4 nanoparticles with a dibromomaleimide-terminated polymer for MR/ optical imaging of thrombosis[J]. Polym Chem, 2020, 11(5): 1010-7. doi: 10.1039/C9PY01568J [43] Bekkers SCAM, Yazdani SK, Virmani R, et al. Microvascular obstruction[J]. J Am Coll Cardiol, 2010, 55(16): 1649-60. doi: 10.1016/j.jacc.2009.12.037 [44] Song YN, Huang ZY, Xu JF, et al. Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model[J]. Biomaterials, 2014, 35(9): 2961-70. doi: 10.1016/j.biomaterials.2013.12.038 [45] Hettie KS. Targeting contrast agents with peak near-infrared-Ⅱ (NIR-Ⅱ) fluorescence emission for non-invasive real-time direct visualization of thrombosis[J]. Front Mol Biosci, 2021, 8: 670251. doi: 10.3389/fmolb.2021.670251 [46] Kwon SP, Jeon S, Lee SH, et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography Thrombus imaging[J]. Biomaterials, 2018, 150: 125-36. doi: 10.1016/j.biomaterials.2017.10.017 [47] Bai S, Liao JT, Zhang B, et al. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi[J]. Biomater Sci, 2020, 8(18): 5047-60. doi: 10.1039/D0BM00818D [48] Zhong YX, Zhang Y, Xu J, et al. Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy [J]. ACS Nano, 2019, 13(3): 3387-403. doi: 10.1021/acsnano.8b09277 [49] 孙杰, 沈义凯, 陈雨佳, 等. 近红外荧光材料在医学影像诊断中的构建与应用[J]. 南京医科大学学报: 自然科学版, 2019, 39(7): 1071-5. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK201907028.htm [50] Hara T, Bhayana B, Thompson B, et al. Molecular imaging of fibrin deposition in deep vein thrombosis using fibrin-targeted near-infrared fluorescence[J]. JACC Cardiovasc Imaging, 2012, 5(6): 607-15. doi: 10.1016/j.jcmg.2012.01.017 [51] Modery CL, Ravikumar M, Wong TL, et al. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery [J]. Biomaterials, 2011, 32(35): 9504-14. doi: 10.1016/j.biomaterials.2011.08.067 [52] Ma YY, Zhang YQ, Han R, et al. A cascade synergetic strategy induced by photothermal effect based on platelet exosome nanoparticles for tumor therapy[J]. Biomaterials, 2022, 282: 121384. doi: 10.1016/j.biomaterials.2022.121384 [53] Stephens AW, Koglin N, Dinkelborg LM. Commentary to 18 F-GP1, a novel PET tracer designed for high-sensitivity, low-background detection of thrombi: imaging activated platelets in clots-are we getting there?[J]. Mol Imaging, 2018, 17: 1536012117749052.
点击查看大图
计量
- 文章访问数: 565
- HTML全文浏览量: 309
- PDF下载量: 24
- 被引次数: 0