留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

定量磁共振T2映射成像在椎间盘退变中的研究进展

薛丛洋 王楠 徐文强 席志鹏 谢林

薛丛洋, 王楠, 徐文强, 席志鹏, 谢林. 定量磁共振T2映射成像在椎间盘退变中的研究进展[J]. 分子影像学杂志, 2022, 45(3): 447-453. doi: 10.12122/j.issn.1674-4500.2022.03.28
引用本文: 薛丛洋, 王楠, 徐文强, 席志鹏, 谢林. 定量磁共振T2映射成像在椎间盘退变中的研究进展[J]. 分子影像学杂志, 2022, 45(3): 447-453. doi: 10.12122/j.issn.1674-4500.2022.03.28
XUE Congyang, WANG Nan, XU Wenqiang, XI Zhipeng, XIE Lin. Progress of quantitative magnetic resonance T2 mapping imaging in disc degeneration[J]. Journal of Molecular Imaging, 2022, 45(3): 447-453. doi: 10.12122/j.issn.1674-4500.2022.03.28
Citation: XUE Congyang, WANG Nan, XU Wenqiang, XI Zhipeng, XIE Lin. Progress of quantitative magnetic resonance T2 mapping imaging in disc degeneration[J]. Journal of Molecular Imaging, 2022, 45(3): 447-453. doi: 10.12122/j.issn.1674-4500.2022.03.28

定量磁共振T2映射成像在椎间盘退变中的研究进展

doi: 10.12122/j.issn.1674-4500.2022.03.28
基金项目: 

江苏省中医药科技发展项目 ZD202008

江苏省干部保健科研课题 BJ19030

详细信息
    作者简介:

    薛丛洋,在读硕士研究生,E-mail: 754118846@qq.com

    通讯作者:

    谢林,博士,主任医师,博士生导师,E-mail: xielin117@126.com

Progress of quantitative magnetic resonance T2 mapping imaging in disc degeneration

  • 摘要: 椎间盘退变是引起下腰背痛的主要原因之一,影像学的检查是诊断椎间盘退变的重要手段。传统MRI技术虽可显示椎间盘的信号强度和形态学改变,但很难客观量化椎间盘退变的程度。T2 mapping技术能够检测椎间盘内水含量、蛋白多糖含量及胶原纤维排列顺序等多种生化成分,为椎间盘退变早期临床评估提供新的方法。本文从T2 mapping与其他定量磁共振技术对比,及其与椎间盘退变分级、日本骨科学会评分、视觉模拟评分及年龄、性别等联系论述定量磁共振T2映射成像在椎间盘退变中的研究进展。

     

  • 图  1  Pfirrmann分级的T2WI影像学表现

    A~E分别表示椎间盘退变Ⅰ~Ⅴ级.

    Figure  1.  T2WI images of Pfirrmann grading.

    图  2  矢状位L3~S1的T2WI图和T2映射图

    A: 矢状位L3~S1的T2WI图; B: 矢状位腰椎间盘T2映射(L3~S1)[29].

    Figure  2.  T2WI and T2 mapping images of sagittal L3-S1 images.

    表  1  Pfirrmann分级

    Table  1.   Pfirrmann grading

    等级 髓核信号 髓核结构 髓核与纤维环的分界 椎问盘的高度
    亮白、均一 清楚 正常
    不均、有水平带 清楚 正常
    中等 灰、不均 模糊 正常-轻度减低
    中低 灰-黑、不均 模糊 正常-中度减低
    不均、黑 消失 重度减低
    下载: 导出CSV

    表  2  改良Pfirrmann分级

    Table  2.   Improved Pfirrmann grading

    分级 髓核及内层纤维信号 后方纤维内外层信号差别 椎间盘高度
    1 均匀高信号, 与脑脊液相当 明显 正常
    2 高信号(>骶骨前脂肪, <脑脊液)-髓核内低信号裂隙 明显 正常
    3 高信号(<骶骨前脂肪) 不明显 正常
    4 中等高信号(略>外层纤维环) 不明显 正常
    5 低信号(=外层纤维环) 不明显 正常
    6 低信号 不明显 椎间盘高度减小<30%
    7 低信号 不明显 椎间盘高度减小30%~ 60%
    8 低信号 不明显 椎间盘高度减小>60%
    下载: 导出CSV

    表  3  椎间盘退变组织学分级量表

    Table  3.   Histological grading scale for disc degeneration

    椎间盘成分 1分 2分 3分
    纤维环 纤维环正常, 纤维软骨板(向后呈u形, 向前略凸)纤维环无破裂, 环内任何部位无裂纹 纤维环破裂或呈裂纹样<30% 纤维环破裂或呈裂纹样>30%
    纤维环与髓核的分界 正常 最小中断 中度、重度中断
    髓核细胞结构 正常细胞, 基质凝胶状结构中有大液泡 细胞数量轻微减少, 空泡减少 细胞数量中度/重度减少(>50%), 无空泡
    髓核基质 正常的凝胶状外观 细胞外基质轻度凝结 细胞外基质中度/重度凝结
    髓核的细胞外基质 正常 细胞外基质轻度形成 中度/重度细胞外基质形成
    下载: 导出CSV

    表  4  髓核组织学退变评分量表

    Table  4.   Nucleus pulposus histological degeneration Scale

    髓核成分 1分 2分 3分
    髓核细胞 正常细胞形态, 在基质凝胶状结构中有大量的空泡 细胞数量轻度减少, 空泡轻度减少 细胞数量中度/重度减少(>50%), 无空泡
    髓核基质 正常凝胶结构 细胞外基质轻度皱缩 细胞外基质中、重度皱缩
    下载: 导出CSV
  • [1] Ji YY, Hong WF, Liu MY, et al. Intervertebral disc degeneration associated with vertebral marrow fat, assessed using quantitative magnetic resonance imaging[J]. Skeletal Radiol, 2020, 49(11): 1753-63. doi: 10.1007/s00256-020-03419-7
    [2] Wenger HC, Cifu AS. Treatment of low back pain[J]. JAMA, 2017, 318(8): 743-4. doi: 10.1001/jama.2017.9386
    [3] 张素芳. 3.0T MR T1 p及T2 mapping在颈椎间盘退行性变中的应用研究[D]. 泰安: 泰山医学院, 2018.
    [4] 王睿哲. CHI3L1在椎间盘退变中的作用及机制研究[D]. 上海: 中国人民解放军海军军医大学, 2020.
    [5] Abdollah V, Parent EC, Su A, et al. The effects of axial loading on the morphometric and T2 characteristics of lumbar discs in relation to disc degeneration[J]. Clin Biomech, 2021, 83: 105291. doi: 10.1016/j.clinbiomech.2021.105291
    [6] Wang L, Han M, Wong J, et al. Evaluation of human cartilage endplate composition using MRI: spatial variation, association with adjacent disc degeneration, and in vivo repeatability[J]. J Orthop Res, 2021, 39(7): 1470-8. doi: 10.1002/jor.24787
    [7] 曾菲菲, 査云飞, 邢栋, 等. 磁共振扩散峰度成像和T2*-mapping技术定量检测腰椎间盘退变的对比研究[J]. 放射学实践, 2018, 33 (10): 1087-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201810034.htm
    [8] Wu XL, Liu C, Yang S, et al. Glycine-serine-threonine metabolic axis delays intervertebral disc degeneration through antioxidant effects: an imaging and metabonomics study[J]. Oxidative Med Cell Longev, 2021, 2021: 5579736.
    [9] 苏树燕, 刘源. 椎间盘退变的磁共振功能成像研究进展[J]. 汕头大学医学院学报, 2019, 32(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-STDY201901015.htm
    [10] Verschueren J, Meuffels DE, Bron EE, et al. Possibility of quantitative T2-mapping MRI of cartilage near metal in high tibial osteotomy: a human cadaver study[J]. J Orthop Res, 2018, 36(4): 1206-12.
    [11] Raudner M, Schreiner MM, Hilbert T, et al. Clinical implementation of accelerated T2 mapping: quantitative magnetic resonance imaging as a biomarker for annular tear and lumbar disc herniation [J]. Eur Radiol, 2021, 31(6): 3590-9. doi: 10.1007/s00330-020-07538-6
    [12] Sollmann N, Weidlich D, Klupp E, et al. T2 mapping of the distal sciatic nerve in healthy subjects and patients suffering from lumbar disc herniation with nerve compression[J]. Magn Reson Mater Phys Biol Med, 2020, 33(5): 713-24. doi: 10.1007/s10334-020-00832-w
    [13] Wang M, Tsang A, Tam V, et al. Multiparametric MR investigation of proteoglycan diffusivity, T 2 relaxation, and concentration in an ex vivo model of intervertebral disc degeneration[J]. J Magn Reson Imaging, 2020, 51(5): 1390-400. doi: 10.1002/jmri.26979
    [14] Jiang YW, Yu L, Luo XJ, et al. Quantitative synthetic MRI for evaluation of the lumbar intervertebral disk degeneration in patients with chronic low back pain[J]. Eur J Radiol, 2020, 124: 108858. doi: 10.1016/j.ejrad.2020.108858
    [15] 雷贞妮. 磁共振T2 Mapping成像对颈椎间盘退变的初步研究[D]. 广州: 南方医科大学, 2017.
    [16] 张新娟. 3.0T磁共振T1ρ与T2* mapping对腰椎间盘退行性变分级评价的对照研究[D]. 济南: 山东大学, 2015.
    [17] 朱记超, 张志强, 郝长胜, 等. 3.0 T磁共振定量T2及T2* mapping技术在颈椎间盘退变中的应用[J]. 临床放射学杂志, 2019, 38(4): 710-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS201904035.htm
    [18] Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1ρ-weighted magnetic resonance imaging[J]. Spine, 2006, 31(11): 1253-7. doi: 10.1097/01.brs.0000217708.54880.51
    [19] Clouet J, Fusellier M, Camus A, et al. Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies[J]. Adv Drug Deliv Rev, 2019, 146: 306-24. doi: 10.1016/j.addr.2018.04.017
    [20] Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration[J]. J Clin Invest, 1996, 98(4): 996-1003. doi: 10.1172/JCI118884
    [21] Yasuma T, Arai K, Yamauchi Y. The histology of lumbar intervertebral disc herniation[J]. Spine, 1993, 18(13): 1761-5. doi: 10.1097/00007632-199310000-00008
    [22] 熊玉超, 曾旭文, 梁治平, 等. 磁共振T2-mapping及T2*-mapping对兔腰椎间盘退变的定量研究[J]. 放射学实践, 2021, 36(8): 1042-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS202108025.htm
    [23] Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine, 2001, 26(17): 1873-8. doi: 10.1097/00007632-200109010-00011
    [24] Griffith JF, Wang YXJ, Antonio GE, et al. Modified pfirrmann grading system for lumbar intervertebral disc degeneration[J]. Spine, 2007, 32(24): E708-12. doi: 10.1097/BRS.0b013e31815a59a0
    [25] Imanishi T, Akeda K, Murata K, et al. Effect of diminished flow in rabbit lumbar arteries on intervertebral disc matrix changes using MRI T2-mapping and histology[J]. BMC Musculoskelet Disord, 2019, 20: 347. doi: 10.1186/s12891-019-2721-y
    [26] Masuda K, Aota Y, Muehleman C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine, 2005, 30 (1): 5-14. doi: 10.1097/01.brs.0000148152.04401.20
    [27] Nisolle JF, Bihin B, Kirschvink N, et al. Prevalence of age-related changes in ovine lumbar intervertebral discs during computed tomography and magnetic resonance imaging[J]. Comp Med, 2016, 66(4): 300-7.
    [28] 李金宝. MRI多种功能成像序列在椎间盘退变的诊断价值[J]. 黑龙江医学, 2020, 44(5): 659-61. doi: 10.3969/j.issn.1004-5775.2020.05.035
    [29] Trattnig S, Stelzeneder D, Goed S, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0T[J]. Eur Radiol, 2010, 20(11): 2715-22. doi: 10.1007/s00330-010-1843-2
    [30] Huang LT, Liu Y, Ding Y, et al. Quantitative evaluation of lumbar intervertebral disc degeneration by axial T2* mapping[J]. Medicine, 2017, 96(51): e9393. doi: 10.1097/MD.0000000000009393
    [31] Chokan K, Murakami H, Endo H, et al. Evaluation of water retention in lumbar intervertebral disks before and after exercise stress with T2 mapping[J]. SPINE, 2016, 41(7): E430-6. doi: 10.1097/BRS.0000000000001283
    [32] Schleich C, Müller-Lutz A, Eichner M, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers[J]. SPINE, 2016, 41(2): 146-52. doi: 10.1097/BRS.0000000000001144
    [33] Blumenkrantz G, Zuo J, Li XJ, et al. In vivo 3.0-tesla magnetic resonance T1ρ and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms[J]. Magn Reson Med, 2010, 63(5): 1193-200. doi: 10.1002/mrm.22362
    [34] Ogon I, Takebayashi T, Takashima H, et al. Analysis of chronic low back pain with magnetic resonance imaging T2 mapping of lumbar intervertebral disc[J]. J Orthop Sci, 2015, 20(2): 295-301. doi: 10.1007/s00776-014-0686-0
    [35] Cui YZ, Yang XH, Liu PF, et al. Preliminary study on diagnosis of lumbar disc degeneration with magnetic resonance T1p, T2 mapping and DWI quantitative detection technologies[J]. Eur Rev Med Pharmacol Sci, 2016, 20(16): 3344-50.
    [36] Wang YXJ, Zhao F, Griffith JF, et al. T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI[J]. Eur Radiol, 2013, 23(1): 228-34. doi: 10.1007/s00330-012-2591-2
    [37] Yoo YH, Yoon CS, Eun NL, et al. Interobserver and test-retest reproducibility of T1ρ and T2 measurements of lumbar intervertebral discs by 3T magnetic resonance imaging[J]. Korean J Radiol, 2016, 17(6): 903. doi: 10.3348/kjr.2016.17.6.903
    [38] Zhang W, Ma XH, Wang Y, et al. Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration[J]. Eur Spine J, 2014, 23(9): 1830-6. doi: 10.1007/s00586-014-3285-z
    [39] Wang W, Hou J, Lv DY, et al. Multimodal quantitative magnetic resonance imaging for lumbar intervertebral disc degeneration[J]. Exp Ther Med, 2017, 14(3): 2078-84. doi: 10.3892/etm.2017.4786
    [40] Paul CPL, Smit TH, de Graaf M, et al. Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content[J]. PLoS One, 2018, 13(1): e0191442. doi: 10.1371/journal.pone.0191442
    [41] Stadelmann MA, Maquer G, Voumard B, et al. Integrating MRI-based geometry, composition and fiber architecture in a finite element model of the human intervertebral disc[J]. J Mech Behav Biomed Mater, 2018, 85: 37-42. doi: 10.1016/j.jmbbm.2018.05.005
    [42] Shinn RL, Pancotto TE, Stadler KL, et al. Magnetization transfer and diffusion tensor imaging in dogs with intervertebral disk herniation [J]. J Vet Intern Med, 2020, 34(6): 2536-44. doi: 10.1111/jvim.15899
    [43] Vadapalli R, Mulukutla R, Vadapalli AS, et al. Quantitative predictive imaging biomarkers of lumbar intervertebral disc degeneration[J]. Asian Spine J, 2019, 13(4): 527-34. doi: 10.31616/asj.2018.0166
    [44] Li L, Zhou ZG, Li J, et al. Diffusion kurtosis imaging provides quantitative assessment of the microstructure changes of disc degeneration: an in vivo experimental study[J]. Eur Spine J, 2019, 28 (5): 1005-13. doi: 10.1007/s00586-019-05924-3
    [45] 曾菲菲, 查云飞. 椎间盘退变MR扩散成像的研究进展[J]. 中国医学影像学杂志, 2019, 27(2): 156-60. doi: 10.3969/j.issn.1005-5185.2019.02.018
    [46] Li L, Zhou ZG, Xiong W, et al. Characterization of the microstructure of the intervertebral disc in patients with chronic low back pain by diffusion kurtosis imaging[J]. Eur Spine J, 2019, 28(11): 2517-25. doi: 10.1007/s00586-019-06095-x
    [47] 曾菲菲, 查云飞, 胡磊, 等. 磁共振扩散峰度成像对腰椎间盘退变的诊断价值[J]. 磁共振成像, 2018, 9(2): 113-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC201802008.htm
    [48] Wang CY, McArdle E, Fenty M, et al. Validation of sodium magnetic resonance imaging of intervertebral disc[J]. Spine, 2010, 35(5): 505-10. doi: 10.1097/BRS.0b013e3181b32d3b
    [49] Zhang C, Lin Y, Han ZH, et al. Feasibility of T2 mapping and magnetic transfer ratio for diagnosis of intervertebral disc degeneration at the cervicothoracic junction: a pilot study[J]. Biomed Res Int, 2019, 2019: 6396073.
    [50] Wang AM, Cao P, Yee A, et al. Detection of extracellular matrix degradation in intervertebral disc degeneration by diffusion magnetic resonance spectroscopy[J]. Magn Reson Med, 2015, 73 (5): 1703-12. doi: 10.1002/mrm.25289
    [51] Schleich C, Miese F, Müller-Lutz A, et al. Value of delayed gadolinium-enhanced magnetic resonance imaging of cartilage for the pre-operative assessment of cervical intervertebral discs[J]. J Orthop Res, 2017, 35(8): 1824-30. doi: 10.1002/jor.23454
    [52] Liu ZZ, Wen HQ, Zhu YQ, et al. Short-term effect of lumbar traction on intervertebral discs in patients with low back pain: correlation between the T2 value and ODI/VAS score[J]. CARTILAGE, 2021, 13(1_suppl): 414S-23S. doi: 10.1177/1947603521996793
    [53] 冯国洋, 郭龙军, 王娟, 等. MRI参数对腰椎间盘突出症患者椎间盘退变程度的评估价值及与JOA、VAS评分相关性[J]. 影像科学与光化学, 2021, 39(2): 207-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGH202102008.htm
    [54] 杨传红, 邱光, 杨骁驰, 等. 腰椎间盘水信号分数在椎间盘退变及突出的应用价值[J]. 临床放射学杂志, 2020, 39(11): 2326-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202011041.htm
    [55] Wáng YXJ, Wáng JQ, Káplár Z. Increased low back pain prevalence in females than in males after menopause age: evidences based on synthetic literature review[J]. Quant Imaging Med Surg, 2016, 6(2): 199-206. doi: 10.21037/qims.2016.04.06
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  231
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-12
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日