留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

对肿瘤内miR-21表达进行契伦科夫光学成像的新方法:基于HSV1-tk报告基因

李淼 张卫善

李淼, 张卫善. 对肿瘤内miR-21表达进行契伦科夫光学成像的新方法:基于HSV1-tk报告基因[J]. 分子影像学杂志, 2021, 44(3): 417-421. doi: 10.12122/j.issn.1674-4500.2021.03.01
引用本文: 李淼, 张卫善. 对肿瘤内miR-21表达进行契伦科夫光学成像的新方法:基于HSV1-tk报告基因[J]. 分子影像学杂志, 2021, 44(3): 417-421. doi: 10.12122/j.issn.1674-4500.2021.03.01
Miao LI, Weishan ZHANG. Cerenkov luminescence imaging of microRNA expression in tumor using an HSV1-tk reporter gene[J]. Journal of Molecular Imaging, 2021, 44(3): 417-421. doi: 10.12122/j.issn.1674-4500.2021.03.01
Citation: Miao LI, Weishan ZHANG. Cerenkov luminescence imaging of microRNA expression in tumor using an HSV1-tk reporter gene[J]. Journal of Molecular Imaging, 2021, 44(3): 417-421. doi: 10.12122/j.issn.1674-4500.2021.03.01

对肿瘤内miR-21表达进行契伦科夫光学成像的新方法:基于HSV1-tk报告基因

doi: 10.12122/j.issn.1674-4500.2021.03.01
基金项目: 

陕西省重点研发计划项目 2020SF-118

详细信息
    作者简介:

    李淼,博士,助理研究员,E-mail: radiopharm_ml@qq.com

    通讯作者:

    张卫善,副主任医师,E-mail: zhangws123@163.com

Cerenkov luminescence imaging of microRNA expression in tumor using an HSV1-tk reporter gene

  • 摘要: 目的构建一种基于I型单纯疱疹病毒胸苷激酶(HSV1-tk)的新型报告基因体系,用于对肿瘤内微小核糖核酸(miR-21)的表达进行契伦科夫光学成像。方法将细胞巨病毒(CMV)启动子基因、HSV1-tk基因以及可被miR-21互补结合的三联miR-21靶基因序列,串联构建成报告基因(CMV-HSV1-tk-3×miR-21t),即将CMV-HSV1-tk-3×miR-21t序列连接到pcDNA3.1质粒载体中并转染A549细胞。向稳定表达上述报告基因的A549细胞(A549T细胞)加入9-[4-[18F]氟-3(羟甲基)丁基]鸟嘌呤([18F] FHBG)孵育;或采用可互补结合miR-21的梯度剂量反义寡聚miR-21(Anti-miR-21)处理A549T细胞后,加入[18F]FHBG孵育。分别对上述细胞进行契伦科夫光学成像和放射性γ计数。另构建A549T裸鼠皮下移植瘤模型,分为2组分别瘤内注射Anti-miR- 21与对照混合RNA,然后分别经尾静脉注射[18F]FHBG后进行活体契伦科夫光学成像。结果A549T细胞摄取[18F]FHBG后,其光学信号强度、γ计数分别与细胞数量之间呈线性正相关(R2=0.9962、0.9807);加入Anti-miR-21的剂量与光学信号强度、γ计数之间分别呈剂量依赖性正相关(P < 0.05);A549T细胞皮下瘤模型成像结果显示,瘤内注射Anti-miR-21与对照RNA的移植瘤对比,肿瘤组织信号更高且视觉对比显著。结论基于microRNA调控的示踪剂摄取相关报告基因体系,本研究成功构建了一种用于对肿瘤内miR-21表达进行契伦科夫光学成像的新方法。

     

  • 图  1  CMV-HSV1-tk-3×miR-21t/[18F]FHBG报告基因成像体系原理示意图.

    细胞内源性miR-21可互补结合到HSV1-tk mRNA下游3’-端非翻译区的miR-21靶序列,抑制HSV1-tk mRNA表达,而外源加入Anti-miR-21后可抑制内源性miR-21的功能; Anti-miR-21: 反义寡聚miR-21; CMV: 细胞巨病毒启动子基因; HSV1-tk: I型单纯疱疹病毒胸苷激酶基因; 3×miR- 21 target: 三联miR-21互补结合靶序列; [18F]FHBG: 9-[4-[18F]氟-3-(羟甲基)丁基]鸟嘌呤.

    Figure  1.  Schematic diagram of the CMV-HSV1- tk- 3 × miR- 21t/[18F] FHBG reporter gene system.

    图  2  稳定表达报告基因载体的梯度数量A549T细胞与[18F]FHBG共孵育120 min后的成像信号.

    A: 细胞的典型契伦科夫光学影像; B: 契伦科夫光学信号强度与细胞数量之间的线性相关性; C: 放射性γ计数率与细胞数量之间的线性相关性.

    Figure  2.  The signals transmitted by the A549T cells in gratitude number stably expressing the reporter gene vector after the incubation with[18F]FHBG for 120 min.

    图  3  加入梯度剂量反义寡聚miR-21处理的稳定表达报告基因载体的A549T细胞与[18F]FHBG共孵育120 min后的成像信号

    Anti-miR-21: 反义寡聚miR-21; NC: 阴性对照; A: 细胞的典型契伦科夫光学图像; B: 细胞的契伦科夫光学信号强度(P < 0.05); C: 细胞的放射性γ计数率(P < 0.05).

    Figure  3.  The signals transmitted by the A549T cells stably expressing the reporter gene vector after the treatment with antisense oligomeric miR- 21 in gratitude concentration and the subsqeuent incubation with[18F]FHBG for 120 min.

    图  4  稳定表达报告基因载体的A549T细胞皮下移植瘤模型小鼠在注射[18F]FHBG 2 h后的典型活体契伦科夫光学图像.

    箭头所指为移植瘤体; A: 瘤内注射In vivo-jetPEI载体包裹AntimiR-21 (n=5); B: 瘤内注射In vivo-jetPEI载体包裹对照RNA (n=5).

    Figure  4.  The typical in vivo Cerenkov images of subcutaneous A549T xenograft model stably expressing the reporter gene vector at 2 h after the injection of[18F]FHBG.

  • [1] Oh SW, Hwang DW, Lee DS. In vivo monitoring of microRNA biogenesis using reporter gene imaging[J]. Theranostics, 2013, 3 (12): 1004-11. doi: 10.7150/thno.4580
    [2] Li M, Wang Y, Liu M, et al. Multimodality reporter gene imaging: Construction strategies and application[J]. Theranostics, 2018, 8 (11): 2954-73. doi: 10.7150/thno.24108
    [3] Cao LQ, Yang XW, Chen YB, et al. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth[J]. Mol Cancer, 2019, 18(1): 148. doi: 10.1186/s12943-019-1075-2
    [4] 王红, 魏福兰, 王春玲. miR-21研究进展[J]. 口腔生物医学, 2018, 9 (2): 106-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KQSW201802011.htm
    [5] Yang WD, Qin WW, Hu ZH, et al. Comparison of Cerenkov Luminescence Imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 Cells [J]. Nucl Med Biol, 2012, 39(7): 948-53. doi: 10.1016/j.nucmedbio.2012.05.004
    [6] Dubey P. Reporter Gene Imaging - Methods and Protocols[M]. New York: Springer-Humana Press, 2018.
    [7] Liu H, Ren G, Liu S, et al. Optical imaging of reporter gene expression using a positron-emission-tomography probe[J]. J Biomed Opt, 2010, 15(6): 1-3.
    [8] 杨卫东, 田捷, 汪静. MicroRNAs靶向肿瘤分子显像[J]. 中华核医学与分子影像杂志, 2014, 34(4): 335-8. doi: 10.3760/cma.j.issn.2095-2848.2014.04.018
    [9] Baril P, Ezzine S, Pichon C. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities[J]. Int J Mol Sci, 2015, 16(3): 4947-72. doi: 10.3390/ijms16034947
    [10] Ying ZM, Wu Z, Tu B, et al. Genetically encoded fluorescent RNA sensor for ratiometric imaging of MicroRNA in living tumor cells [J]. J Am Chem Soc, 2017, 139(29): 9779-82. doi: 10.1021/jacs.7b04527
    [11] Simion V, Sobilo J, Clemoncon R, et al. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy[J]. PLoS One, 2017, 12(5): e0177492. doi: 10.1371/journal.pone.0177492
    [12] Wang F, Song X, Li X, et al. Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system[J]. PLoS One, 2013, 8(4): e61792. doi: 10.1371/journal.pone.0061792
    [13] Shaikh FA, Kurtys E, Kubassova O, et al. Reporter gene imaging and its role in imaging-based drug development[J]. Drug Discov Today, 2020, 25(3): 582-92. doi: 10.1016/j.drudis.2019.12.010
    [14] Jo MH, Jeong MS, Ko HY, et al. Radioisotope imaging of microRNA-9-regulating neurogenesis using sodium iodide sympoter [J]. Biomaterials, 2013, 34(20): 4803-9. doi: 10.1016/j.biomaterials.2013.03.032
    [15] 杨柳, 李彦鹏, 吴彬彬, 等. 优化18F-FHBG自动化合成方法及其质量评估[J]. 中国医学影像技术, 2019, 35(3): 417-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201903037.htm
    [16] Mäkilä J, Kiviniemi A, Saanijoki T, et al. Noninvasive and quantitative monitoring of the distributions and kinetics of MicroRNA-targeting molecules in vivo by positron emission tomography[J]. Mol Pharm, 2019, 16(4): 1507-15. doi: 10.1021/acs.molpharmaceut.8b01169
    [17] Song Y, Xu Z, Wang F. Genetically encoded reporter genes for MicroRNA imaging in living cells and animals[J]. Mol Ther Nucleic Acids, 2020, 21: 555-67. doi: 10.1016/j.omtn.2020.06.021
    [18] Liu J, Zheng T, Tian Y. Functionalized h-BN nanosheets as a theranostic platform for SERS real-time monitoring of MicroRNA and photodynamic therapy[J]. Angew Chem Int Ed Engl, 2019, 58 (23): 7757-61. doi: 10.1002/anie.201902776
    [19] Qu A, Sun M, Xu L, et al. Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies[J]. PNAS, 2019, 116(9): 3391-400. doi: 10.1073/pnas.1810764116
    [20] Fu ZL, Wu YD, Ren CN, et al. Cancer cell-targeted nanoprobe for multilayer imaging of diverse biomarkers and precise photodynamic therapy[J]. Chem Commun Camb Engl, 2020, 56(96): 15208-11. doi: 10.1039/D0CC06305C
    [21] Wu H, Chen TT, Wang XN, et al. RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe[J]. Chem Sci, 2020, 11(1): 62-9. doi: 10.1039/C9SC03469B
    [22] Wang F, Zhang B, Zhou L, et al. Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter[J]. ACS Appl Mater Interfaces, 2016, 8(14): 9014-21. doi: 10.1021/acsami.6b02662
    [23] Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes[J]. PLoS One, 2010, 5(3): e9470. doi: 10.1371/journal.pone.0009470
  • 加载中
图(4)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  178
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日