留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

3.0 T磁共振扩散峰度成像联合扩散加权成像评估侵袭性前列腺癌

张丽君 邢伟 邢士军

张丽君, 邢伟, 邢士军. 3.0 T磁共振扩散峰度成像联合扩散加权成像评估侵袭性前列腺癌[J]. 分子影像学杂志, 2020, 43(1): 76-81. doi: 10.12122/j.issn.1674-4500.2020.01.16
引用本文: 张丽君, 邢伟, 邢士军. 3.0 T磁共振扩散峰度成像联合扩散加权成像评估侵袭性前列腺癌[J]. 分子影像学杂志, 2020, 43(1): 76-81. doi: 10.12122/j.issn.1674-4500.2020.01.16
Lijun ZHANG, Wei XING, Shijun XING. Diffusion kurtosis imaging combined with DWI at 3.0 T MRI for detection and assessment of aggressiveness of prostate cancer[J]. Journal of Molecular Imaging, 2020, 43(1): 76-81. doi: 10.12122/j.issn.1674-4500.2020.01.16
Citation: Lijun ZHANG, Wei XING, Shijun XING. Diffusion kurtosis imaging combined with DWI at 3.0 T MRI for detection and assessment of aggressiveness of prostate cancer[J]. Journal of Molecular Imaging, 2020, 43(1): 76-81. doi: 10.12122/j.issn.1674-4500.2020.01.16

3.0 T磁共振扩散峰度成像联合扩散加权成像评估侵袭性前列腺癌

doi: 10.12122/j.issn.1674-4500.2020.01.16
详细信息
    作者简介:

    张丽君,副主任技师,E-mail:2163582353@qq.com

    通讯作者:

    邢 伟,博士,主任医师,E-mail:suzhxingwei@126.com

Diffusion kurtosis imaging combined with DWI at 3.0 T MRI for detection and assessment of aggressiveness of prostate cancer

  • 摘要: 目的探讨3.0 T磁共振扩散峰度成像联合扩散加权成像在侵袭性前列腺癌诊断中的价值。方法回顾性分析2015年5月~2019年6月我院经前列腺穿刺活检确诊并行磁共振扩散峰度成像和扩散加权成像进行诊断的患者共80例,包括49例侵袭性前列腺癌患者和31例良性前列腺增生患者。依据Gleason评分(GS)将侵袭性前列腺癌患者分为低级别组(GS≤3+3)和中、高级别组(GS≥3+4);获得DKI表观峰度系数(Kapp)和扩散加权成像表观扩散系数(ADC)。比较侵袭性前列腺癌与良性前列腺增生之间Kapp和ADC的差异,以及扩散峰度成像和扩散加权成像参数与Gleason评分的相关性,绘制ROC曲线评估二者诊断效能。结果49例侵袭性前列腺癌患者共绘制肿瘤感兴趣区65个,包括低级别26个,中、高级别39个。相比低级别侵袭性前列腺癌和良性前列腺增生,中、高级别侵袭性前列腺癌的ADC值较低,Kapp值较高(P<0.01)。诊断侵袭性前列腺癌和对其进行分级时,Kapp的曲线下面积均小于ADC(0.947 vs 0.978,P<0.001;0.689 vs 0.894,P=0.008);二者联合诊断侵袭性前列腺癌和对其进行分级时,曲线下面积大于Kapp(0.979 vs 0.947,P=0.013;0.934 vs 0.689,P<0.001),二者联合诊断和分级的曲线下面积大于ADC,但差异无统计学意义(P>0.05);二者联合对侵袭性前列腺癌分级的特异性较单独采用Kapp要高(0.838 vs 0.730,P=0.035)。结论ADC和Kapp参数均可用于诊断和评估侵袭性前列腺癌的侵袭性,扩散峰度成像联合扩散加权成像诊断和评估侵袭性前列腺癌的侵袭性并没有表现出比单独应用扩散加权成像具有更高的诊断效能。

     

  • 图  1  男性,72岁,诊断为前列腺癌

    GS评分4+3, PSA 34.8 ng/mL; A:T2WI显示均匀低信号影;B,C:ADC图(B)和经非高斯模型校正的ADC图(C)显示局灶低信号影;D:表观峰度系数图显示局灶性高信号;E:病理组织学检查(HE,×200)诊断为低分化前列腺癌.

    Figure  1.  Male ,72 years old, diagnosed with prostate cancer

    图  2  ROC曲线显示ADC、Kapp以及ADC+Kapp用于诊断和评估前列腺癌的诊断效能

    A:ROC曲线用于鉴别前列腺增生与前列腺癌;B:ROC用于鉴别低级别前列腺癌(GS≤3+3)和中、高级别前列腺癌(GS≥3+4).

    Figure  2.  Diagnostic efficiency of ADC, Kapp and ADC+Kapp for diagnosis and evaluation of prostate cancer by ROC curve

    表  1  ADC和Kapp值比较

    Table  1.   Comparison of ADC and Kapp

    组别ADC(×10−3 mm2/s)Kapp
    前列腺增生 0.846±0.101 0.788±0.108
    前列腺癌 0.557±0.095 1.079±0.152
    P <0.001 <0.001
    GS≤3+3 0.634±0.084 1.030±0.130
    GS≥3+4 0.504±0.058 1.113±0.157
    P <0.001 0.009
    外周带前列腺癌 0.539±0.080 1.084±0.142
    移行带前列腺癌 0.570±0.102 1.075±0.167
    P 0.129 0.803
    ADC: 表观弥散系数; Kapp: 表观峰度系数; GS: Gleason评分.
    下载: 导出CSV

    表  2  ADC、Kapp及联合诊断效能比较

    Table  2.   Comparison of ADC, Kapp and combined diagnostic efficacy

    参数AUC(95%CI)截断值(×10−3 mm2/s)敏感性特异性
    前列腺癌 vs 前列腺增生
    ADC 0.978(0.960−0.997) 0.695* 0.925 0.922
    Kapp 0.947(0.914−0.980) 0.905 0.911 0.868
    ADC+Kapp 0.979(0.960−0.997) 0.922 0.943
    GS≤3+3 vs GS≥3+4
    ADC 0.894(0.813−0.974) 0.555* 0.892 0.868
    Kapp 0.689(0.577−0.802) 1.055 0.679 0.730
    ADC+Kapp 0.934(0.885−0.982) 0.906 0.838
    下载: 导出CSV
  • [1] Fidler MM, Bray F, Soerjomataram I. The global cancer burden and human development: a review[J]. Scand J Public Health, 2018, 46(1): 27-36. doi: 10.1177/1403494817715400
    [2] Tyson MD, Penson DF, Resnick MJ. The comparative oncologic effectiveness of available management strategies for clinically localized prostate cancer[J]. Urol Oncol, 2017, 35(2): 51-8. doi: 10.1016/j.urolonc.2016.03.021
    [3] Catala V, Vilanova JC, Gaya JM, et al. Multiparametric magnetic resonance imaging and prostate cancer: what's new[J]. Radiologia, 2017, 59(3): 196-208. doi: 10.1016/j.rx.2016.12.003
    [4] Barbieri S, Bronnimann M, Boxler S, et al. Differentiation of prostate cancer lesions with high and with low Gleason score by diffusion-weighted MRI[J]. Eur Radiol, 2017, 27(4): 1547-55. doi: 10.1007/s00330-016-4449-5
    [5] Sprinkart AM, Marx C, Traber F, et al. Evaluation of Exponential ADC (eADC) and computed DWI (cDWI) for the detection of prostate cancer[J]. Rofo, 2018, 190(8): 758-66. doi: 10.1055/a-0637-9980
    [6] Luo M, Zhang L, Jiang XH, et al. Intravoxel incoherent motion: application in differentiation of hepatocellular carcinoma and focal nodular hyperplasia[J]. Diagn Interv Radiol, 2017, 23(4): 263-71. doi: 10.5152/dir.2017.16595
    [7] Roethke MC, Kuder TA, Kuru TH, et al. Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer[J]. Invest Radiol, 2015, 50(8): 483-9. doi: 10.1097/RLI.0000000000000155
    [8] Hectors SJ, Semaan S, Song C, et al. Advanced diffusion-weighted imaging modeling for prostate cancer characterization: correlation with quantitative histopathologic tumor tissue composition-a hypothesis-generating study[J]. Radiology, 2018, 286(3): 918-28. doi: 10.1148/radiol.2017170904
    [9] Hoang DA, Melodelima C, Souchon R, et al. Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study[J]. Radiology, 2016, 280(1): 117-27. doi: 10.1148/radiol.2016151406
    [10] Jambor I, Pesola M, Merisaari H, et al. Relaxation along fictitious field, diffusion-weighted imaging, and T2 mapping of prostate cancer: Prediction of cancer aggressiveness[J]. Magn Reson Med, 2016, 75(5): 2130-40. doi: 10.1002/mrm.25808
    [11] Wang X, Tu N, Qin T, et al. Diffusion kurtosis imaging combined with DWI at 3-T MRI for detection and assessment of aggressiveness of prostate cancer[J]. Am J Roentgenol, 2018, 211(4): 797-804. doi: 10.2214/AJR.17.19249
    [12] Suo S, Chen X, Wu L, et al. Non-Gaussian water diffusion kurtosis imaging of prostate cancer[J]. Magn Reson Imaging, 2014, 32(5): 421-7. doi: 10.1016/j.mri.2014.01.015
    [13] Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants[J]. Magn Reson Imaging, 2012, 30(10): 1534-40. doi: 10.1016/j.mri.2012.04.020
    [14] Suo S, Chen X, Ji X, et al. Investigation of the non-Gaussian water diffusion properties in bladder cancer using diffusion kurtosis imaging: a preliminary study[J]. J Comput Assist Tomogr, 2015, 39(2): 281-5. doi: 10.1097/RCT.0000000000000197
    [15] Filli L, Wurnig M, Nanz D, et al. Whole-body diffusion kurtosis imaging: initial experience on non-Gaussian diffusion in various organs[J]. Invest Radiol, 2014, 49(12): 773-8. doi: 10.1097/RLI.0000000000000082
    [16] Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging[J]. J Urol, 2017, 197(2s): 134-9.
    [17] Kozal S, Peyronnet B, Cattarino S, et al. Influence of pathological factors on oncological outcomes after robot-assisted radical prostatectomy for localized prostate cancer: results of a prospective study[J]. Urol Oncol, 2015, 33(7): 330-7.
    [18] Gillessen S, Attard G, Beer T M, et al. Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference 2017[J]. Eur Urol, 2018, 73(2): 178-211. doi: 10.1016/j.eururo.2017.06.002
    [19] Salami SS, Ben-Levi E, Yaskiv O, et al. Risk stratification of prostate cancer utilizing apparent diffusion coefficient value and lesion volume on multiparametric MRI[J]. J Magn Reson Imaging, 2017, 45(2): 610-6. doi: 10.1002/jmri.25363
    [20] Chen Y, Ren W, Zheng D, et al. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients[J]. J Magn Reson Imaging, 2015, 42(5): 1354-61. doi: 10.1002/jmri.24910
    [21] Tamada T, Sone T, Jo Y, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade[J]. J Magn Reson Imaging, 2008, 28(3): 720-6. doi: 10.1002/jmri.21503
    [22] Shaikhibrahim Z, Lindstrot A, Ellinger J, et al. The peripheral zone of the prostate is more prone to tumor development than the transitional zone: is the ETS family the key[J]. Mol Med Rep, 2012, 5(2): 313-6.
    [23] Tamada T, Prabhu V, Li J, et al. Prostate cancer: diffusion-weighted MR imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models[J]. Radiology, 2017, 284(1): 100-8. doi: 10.1148/radiol.2017162321
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  318
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日