留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

平扫T2脂肪抑制序列图像纹理可提高诊断乳腺良恶性结节的准确率

陈文静 牟伟 张文馨 徐蕊 燕桂新 梁颖

陈文静, 牟伟, 张文馨, 徐蕊, 燕桂新, 梁颖. 平扫T2脂肪抑制序列图像纹理可提高诊断乳腺良恶性结节的准确率[J]. 分子影像学杂志, 2019, 42(4): 453-456. doi: 10.12122/j.issn.1674-4500.2019.04.07
引用本文: 陈文静, 牟伟, 张文馨, 徐蕊, 燕桂新, 梁颖. 平扫T2脂肪抑制序列图像纹理可提高诊断乳腺良恶性结节的准确率[J]. 分子影像学杂志, 2019, 42(4): 453-456. doi: 10.12122/j.issn.1674-4500.2019.04.07
Wenjing CHEN, Wei MOU, Wenxin ZHANG, Rui XU, Guixin YAN, Ying LIANG. Value of T2 fat inhibition sequence image texture analysis in diagnosis of benign and malignant breast nodules[J]. Journal of Molecular Imaging, 2019, 42(4): 453-456. doi: 10.12122/j.issn.1674-4500.2019.04.07
Citation: Wenjing CHEN, Wei MOU, Wenxin ZHANG, Rui XU, Guixin YAN, Ying LIANG. Value of T2 fat inhibition sequence image texture analysis in diagnosis of benign and malignant breast nodules[J]. Journal of Molecular Imaging, 2019, 42(4): 453-456. doi: 10.12122/j.issn.1674-4500.2019.04.07

平扫T2脂肪抑制序列图像纹理可提高诊断乳腺良恶性结节的准确率

doi: 10.12122/j.issn.1674-4500.2019.04.07
基金项目: 新疆兵团卫生局科研项目(1520)
详细信息
    作者简介:

    陈文静,硕士,副主任医师,E-mail:wen-jing333@163.com

    通讯作者:

    梁 颖,博士,主任医师,E-mail:langy_2000@sina.com

Value of T2 fat inhibition sequence image texture analysis in diagnosis of benign and malignant breast nodules

  • 摘要: 目的探讨平扫T2脂肪抑制序列(FS T2WI)图像纹理分析鉴别诊断乳腺良恶性结节的价值。方法回顾性分析经手术病理证实的60例患者共61个乳腺结节FS T2WI图像。绘制纹理参数鉴别诊断良恶性乳腺结节的ROC曲线,并与病理结果进行对照。结果60例患者的61个乳腺结节,FS T2WI纹理参数灰度区域矩阵重点运行高灰度级判断乳腺结节良恶性的AUC值(0.701)最大且诊断准确率高,其诊断恶性乳腺结节的敏感度为65.52%(19/29),特异度为71.88%(23/32),误判率为31.15%(19/61)。FS T2WI图像诊断乳腺恶性结节敏感度为71.43%(20/28)、特异度为63.64%(21/33)、误判率为32.79%(20/61);两者联合应用敏感度为64.29%(18/28),特异度78.79%(26/33),误判率为27.87%(15/61),与单独T2比较,差异有统计学意义(χ2=72.255,P=0.000)。结论平扫FS T2WI序列结合纹理分析能够提高诊断乳腺良恶性结节的特异度,降低误判率,提高乳腺平扫诊断的准确度。

     

  • 表  1  FS T2WI与纹理分析联合诊断与病理结果对比(n

    FS T2WI与纹理联合病理合计
    阳性阴性
    阳性 18 7 25
    阴性 10 26 36
    合计 28 33 61
    下载: 导出CSV
  • [1] Saslow D, Boetes C, Burke W, et al. American cancer society guidelines for breast screening with MRI as an adjunct to mammography[J]. CA Cancer J Clin, 2007, 57(2): 75-89. doi: 10.3322/canjclin.57.2.75
    [2] 许玲辉, 顾雅佳. 乳腺磁共振在乳腺癌诊断治疗中的运用[J]. 中国癌症杂志, 2013, 23(8): 613-7. doi: 10.3969/j.issn.1007-3969.2013.08.009
    [3] 李 珂, 刘 惠. 乳腺计算机辅助诊断中DCE-MRI图像特征的选择与分析[J]. 北京生物医学工程, 2012, 31(4): 343-8. doi: 10.3969/j.issn.1002-3208.2012.04.03.
    [4] Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer[J]. Eur Radiol, 2016, 26(2): 322-30. doi: 10.1007/s00330-015-3845-6
    [5] Wu M, Ma J. Association between imaging characteristics and different molecular subtypes of breast cancer[J]. Acad Radiol, 2017, 24(4): 426-34. doi: 10.1016/j.acra.2016.11.012
    [6] 吴佩琪, 赵 可, 梁长虹, 等. 基于扩散加权成像和动态增强MRI的影像组学特征与乳腺癌分子分型的关系初探[J]. 中华放射学杂志, 2018, 52(5): 338-43. doi: 10.3760/cma.j.issn.1005-1201.2018.05.004
    [7] 曹 崑, 刘 慧, 孙应实, 等. 常规MRI纹理分析鉴别乳腺良,恶性病变的价值初探[J]. 中华放射学杂志, 2017, 51(8): 588-91. doi: 10.3760/cma.j.issn.1005-1201.2017.08.006
    [8] 黄远明, 梁立华, 陈晓东, 等. 钼靶及MRI纹理分析技术在乳腺疾病诊断中的研究进展[J]. 中国CT和MRI杂志, 2019, 17(6): 147-50. doi: 10.3969/j.issn.1672-5131.2019.06.045
    [9] Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results[J]. Eur Radiol, 2017, 27(7): 3050-9. doi: 10.1007/s00330-016-4663-1
    [10] Choi Y, Kim SH, Youn IK, et al. Rim sign and histogram analysis of apparent diffusion coefficient values on diffusion-weighted MRI in triple-negative breast cancer: comparison with ER-positive subtype[J]. PLoS One, 2017, 12(5): e0177903-14. doi: 10.1371/journal.pone.0177903
    [11] 陈 瑾, 王海屹, 叶慧义. 纹理分析在肿瘤影像学中的研究进展[J]. 中华放射学杂志, 2017, 51(8): 979-82.
    [12] 宋之琰. MRI纹理分析在乳腺癌诊疗中的应用进展[J]. 影像诊断与介入放射学, 2019, 28(3): 219-24. doi: 10.3969/j.issn.1005-8001.2019.03.011
    [13] 邓丹琼, 梁碧玲. 乳腺癌患者临床病理特征与磁共振成像强化率关系[J]. 中国公共卫生, 2016, 32(9): 1255-7. doi: 10.11847/zgggws2016-32-09-32
    [14] American College of Radiology. Breast imaging reporting and data system[M]. 4th Edition, Reston: Breast Imaging Atlas, 2003.
    [15] 牟 玮. 肿瘤PET/CT成像影像组学相关算法的研究[D]. 北京: 中国科学院大学, 2016: 42-6.
    [16] 吴晓燕, 张贵祥, 李康安, 等. 增强与非增强组合序列MRI对乳腺病变筛查的比较研究[J]. 放射学实践, 2014, 29(12): 1424-8.
    [17] Uematsu T, Kasami M, Watanabe J. Is evaluation of the presence of prepectoral edema on T2-weighted with fat-suppression 3T breast MRI a simple and readily available noninvasive technique for estimation of prognosis in patients with breast cancer[J]. Breast Cancer, 2014, 21(6): 684-92. doi: 10.1007/s12282-013-0440-z
    [18] Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sen tinel lymph node metastasis in breast cancer based on radiom ics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(6): 582-91.
    [19] Bhooshan N, Giger M, Lan L, et al. Combined use of T2-weighted MRI and T1-weighted dynamic contrast-enhanced MRI in the automated analysis of breast lesions[J]. Magn Reson Med, 2011, 66(2): 555-64. doi: 10.1002/mrm.22800
    [20] Rakoczy M, Mcgaughey D, Korenberg MJ, et al. Feature selection in computer-aided breast cancer diagnosis via dynamic contrast-enhanced magnetic resonance images[J]. J Digit Imaging, 2013, 26(2): 198-208. doi: 10.1007/s10278-012-9506-2
    [21] Wang TC, Huang YH, Huang CS, et al. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis[J]. Magn Reson Imaging, 2014, 32(3): 197-205. doi: 10.1016/j.mri.2013.12.002
    [22] Kawshima H, Kobayashi YM. Peripheralhy perintense pattern pn T2-weighted magneric resonance imaging(MRI)in breast carcinoma:correlation with early peripheral en-hancement on dynamic MRI and histopathologic findings[J]. J Magn Reson Imaging, 2010, 32(5): 1117-23. doi: 10.1002/jmri.22279
    [23] 李汉森, 章 强, 齐海坤, 等. 基于增强 MRI 纹理分析区分非产褥期乳腺炎与非肿块样强化病灶乳腺癌[J]. 中国医学影像学杂志, 2017, 25(3): 354-9.
    [24] Clendenen TV, Kim S, Moy L, et al. Magnetic resonance imaging(MRI)of hormone-induce breast changes in young premeno-pausal women[J]. Magn Reson Imag, 2013, 106(31): 1-9.
  • 加载中
表(1)
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  448
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-15
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回