留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

功能成像技术对乳腺癌新辅助化疗后疗效评估的研究进展

杨立光 周倩 李启霖 刘新疆

杨立光, 周倩, 李启霖, 刘新疆. 功能成像技术对乳腺癌新辅助化疗后疗效评估的研究进展[J]. 分子影像学杂志, 2019, 42(3): 285-289. doi: 10.12122/j.issn.1674-4500.2019.03.01
引用本文: 杨立光, 周倩, 李启霖, 刘新疆. 功能成像技术对乳腺癌新辅助化疗后疗效评估的研究进展[J]. 分子影像学杂志, 2019, 42(3): 285-289. doi: 10.12122/j.issn.1674-4500.2019.03.01
Liguang YANG, Qian ZHOU, Qilin LI, Xinjiang LIU. Advances in functional imaging techniques for evaluating the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Journal of Molecular Imaging, 2019, 42(3): 285-289. doi: 10.12122/j.issn.1674-4500.2019.03.01
Citation: Liguang YANG, Qian ZHOU, Qilin LI, Xinjiang LIU. Advances in functional imaging techniques for evaluating the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Journal of Molecular Imaging, 2019, 42(3): 285-289. doi: 10.12122/j.issn.1674-4500.2019.03.01

功能成像技术对乳腺癌新辅助化疗后疗效评估的研究进展

doi: 10.12122/j.issn.1674-4500.2019.03.01
基金项目: 山东省自然科学基金(ZR2016HL43);山东省医药卫生科技发展计划(2015WS0479)
详细信息
    作者简介:

    杨立光,硕士,E-mail:ylg1013@163.com

    通讯作者:

    刘新疆,博士,主任医师,E-mail:lxj6513@163.com

Advances in functional imaging techniques for evaluating the efficacy of neoadjuvant chemotherapy for breast cancer

  • 摘要: 乳腺癌是女性最常见的恶性肿瘤,死亡率更是高居不下。乳腺癌患者的生存率与其所处的肿瘤分期息息相关,新辅助化疗因其能降低乳腺癌的分期、缩小病变体积,使其达到手术或保乳的目的,越来越多应用于肿瘤的术前治疗。能反映病灶微观变化的功能成像技术可以优先于肿瘤的形态学变化,通过反映肿瘤血管系统和代谢的变化从而及时评估乳腺癌患者对于新辅助化疗反应的敏感性,为临床治疗方案的调整提供有效帮助。因此本文对于功能成像技术在新辅助化疗后乳腺癌化疗反应的优缺点及其前景进行综述。

     

  • [1] 马丹丹, 刘 坤, 齐晓伟. 2018年全球癌症统计: 乳腺癌发病和死亡人数统计[J]. 中华乳腺病杂志: 电子版, 2018, 12(6): 375-9. doi: 10.3877/cma.j.issn.1674-0807.2018.06.015
    [2] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.005
    [3] 唐建周, 赫军. 乳腺癌新辅助化疗的研究概况[J]. 中国临床新医学, 2018, 11(7): 728-32. doi: 10.3969/j.issn.1674-3806.2018.07.31
    [4] Duffaud F, Thrasse P. New guidelines to evaluate the response to treatment in solid tumors[J]. Bull Cancer, 2000, 87(12): 881-6.
    [5] Leach MO, Morgan B, Tofts PS, et al. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging[J]. Eur Radiol, 2012, 22(7): 1451-64. doi: 10.1007/s00330-012-2446-x
    [6] Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols[J]. J Magn Reson Imag, 1999, 10(3): 223-32. doi: 10.1002/(ISSN)1522-2586
    [7] 鄢英男, 李 琳, 孙夕林, 等. 磁共振功能成像在监测乳腺癌新辅助化疗中的应用和进展[J]. 现代生物医学进展, 2018, 18(5): 979-81.
    [8] Tudorica A, Ogh KY, Chui SY, et al. Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE-MRI[J]. Transl Oncol, 2016, 9(1): 8-17. doi: 10.1016/j.tranon.2015.11.016
    [9] Drisis S, Metens T, Ignatiadis M, et al. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy[J]. Europ Radiol, 2016, 26(5): 1474-84. doi: 10.1007/s00330-015-3948-0
    [10] Park SH, Moon WK, Cho N, et al. Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer[J]. Radiology, 2010, 257(1): 56-63. doi: 10.1148/radiol.10092021
    [11] Lobbes MB, Prevos R, Smidt M, et al. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: a systematic review[J]. Insights Imag, 2013, 4(2): 163-75. doi: 10.1007/s13244-013-0219-y
    [12] Le BD, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-7. doi: 10.1148/radiology.161.2.3763909
    [13] Kim Y, Kim SH, Lee HW, et al. Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer[J]. Magnetic Reson Imag, 2018, 48(1): 27-33. doi: 10.1002/jmri.26183
    [14] Che S, Zhao X, Ou Y, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Medicine, 2016, 95(4): e2420-33. doi: 10.1097/MD.0000000000002420
    [15] 付泽鸿, 吴西子, 徐红芳, 等. 磁共振扩散张量成像在乳腺癌诊断中的应用[J]. 癌症进展, 2018, 16(5): 597-9.
    [16] Partridge SC, Ziadloo A, Murthy R, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors[J]. J Magn Reson Imag, 2010, 31(2): 339-47. doi: 10.1002/jmri.v31:2
    [17] Furman E, Nissan N, Ricart V, et al. Quantitative evaluation of breast cancer response to neoadjuvant chemotherapy by diffusion tensor imaging: initial results[J]. J Magn Reson Imag, 2018, 47(4): 1080-90. doi: 10.1002/jmri.v47.4
    [18] 蒋瑞生. DTI参数对乳腺癌的诊断价值及其与乳腺癌分级和细胞密度的关系[D]. 山东大学, 2016.
    [19] Eyal E, Shapiro M, Furman E, et al. Parametric diffusion tensor imaging of the breast[J]. Invest Radiol, 2012, 47(5): 284-91. doi: 10.1097/RLI.0b013e3182438e5d
    [20] 陆 旭, 华 彬, 姜 蕾, 等. 利用~1H-MRS早期评估乳腺癌新辅助化疗疗效的研究[J]. 中国医刊, 2012, 47(12): 35-7. doi: 10.3969/j.issn.1008-1070.2012.12.013
    [21] Murata Y, Hanada N, Kubota K, et al. Choline by magnetic spectroscopy and dynamic contrast enhancement curve by magnetic resonance imaging in neoadjuvant chemotherapy for invasive breast cancer[J]. Mol Med Rep, 2009, 2(1): 39-43.
    [22] Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T[J]. Radiology, 2004, 233(2): 424-31. doi: 10.1148/radiol.2332031285
    [23] Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy[J]. J Med Imag Radiat Oncol, 2015, 59(3): 268-77. doi: 10.1111/jmiro.2015.59.issue-3
    [24] Li H, Yao L, Jin P, et al. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J]. The Breast, 2018, 40(1): 106-15.
    [25] Gu Y, Pan S, Ren J, et al. Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: a meta-analysis[J]. Clin Breast Cancer, 2017, 17(4): 245-55. doi: 10.1016/j.clbc.2016.12.010
    [26] Berriolo A, Touzery C, Riedinger JM, et al. FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy[J]. Eur J Nucl Med Mol Imag, 2007, 34(12): 1915-24. doi: 10.1007/s00259-007-0459-5
    [27] Groheux D, Espie M, Giavvhetti S, et al. Performance of FDG PET/CT in the clinical management of breast cancer[J]. Radiology, 2013, 266(2): 388-405. doi: 10.1148/radiol.12110853
    [28] Mcaermott M, Welch A, Staff RT, et al. Monitoring primary breast cancer throughout chemotherapy using FDG-PET[J]. Breast Cancer Res Treat, 2007, 102(1): 75-84. doi: 10.1007/s10549-006-9316-7
    [29] Berg WA, Madsen KS, Schilling K, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer[J]. Am J Roentgenol, 2012, 198(1): 219-32. doi: 10.2214/AJR.10.6342
    [30] Yano F, Itoh M, Hirakkawa H, et al. Diagnostic accuracy of positron emission mammography with (18)F-fluorodeoxyglucose in breast cancer tumor of less than 20 mm in size[J]. Asia Ocean J Nucl Med Biol, 2019, 7(1): 13-21.
    [31] Cutrone JA, Yospur LS, Khalkhali I, et al. Immunohistologic assessment of technetium-99m-MIBI uptake in benign and malignant breast lesions[J]. J Nucl Med, 1998, 39(3): 449-53.
    [32] Tiling R, Linke R, Kessler M, et al. Breast scintigraphy using 99 mTc-sestamibi--use and limitations][J]. Nuklearmedizin, 2002, 41(3): 148-56. doi: 10.1055/s-0038-1623890
    [33] Silov G, Tasdemi A, Ozdal A, et al. Radionuclide imaging for breast cancer diagnosis and management: is technetium-99 m tetrofosmin uptake related to the grade of malignancy[J]. Hell J Nucl Med, 2014, 17(2): 87-9.
    [34] Listewnik MH, Birkenfeld B, Foszczynska M, et al. Response of malignant breast tumours to neoadjuvant chemotherapy evaluated with Tc-99m MIBI[J]. Ann Acad Med Stetin, 2011, 57(1): 73-8.
    [35] Liu Z, Lu ZD, Zhang HW, et al. Predictive value of (99)Tc(m)-MIBI scintimammography in evaluation of the efficacy of neoadjuvant chemotherapy in patients with operable breast cancer[J]. Chin J Oncol, 2011, 33(7): 544-6.
    [36] Kim S, Plemmons J, Hoang K, et al. Breast-specific gamma imaging versus MRI: comparing the diagnostic performance in assessing treatment response after neoadjuvant chemotherapy in patients with breast cancer[J]. Am J Roentgenol, 2019, 212(3): 696-705. doi: 10.2214/AJR.17.18930
    [37] Lee HS, Ko BS, Ahn SH, et al. Diagnostic performance of breast-specific gamma imaging in the assessment of residual tumor after neoadjuvant chemotherapy in breast cancer patients[J]. Breast Cancer Res Treat, 2014, 145(1): 91-100. doi: 10.1007/s10549-014-2920-z
  • 加载中
计量
  • 文章访问数:  6055
  • HTML全文浏览量:  772
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回