Phase-contrast magnetic resonance imaging evaluates the atherosclerosis
-
摘要:
目的探讨相位对比磁共振定量血流测定技术(PC-MRI)用于在体血流动力学分析以及评价动脉血流动力学改变致动脉粥样硬化的可行性。 方法自南方医科大学动物中心购健康成年兔13只,其中随机选雌雄兔各2只(共4只)做对照组,对照组获取实验数据后与其它9只一起共同高脂喂养,13只给予高脂喂养2~6月作为实验组。兔麻醉前,抽取7 mL血送血粘度检测,麻醉后再将兔四肢固定于平板上,先行冠状位T2WI序列扫描,选取腹主动脉显示清晰的层面,以肾动脉分叉上方1 cm处主动脉为靶血管,采用PC-MRI定量血流测定技术进行扫描。获得腹主动脉横截面血流相位图及幅度图,选取含血流信息的相位对比图、幅度图作为分析图像,利用研发的血流动力学参数处理软件处理上述对照组及实验组相位图、幅度图数据,观察主动脉壁切应力(WSS)、平均流速、血流率等,采用独立样本t检验分析数据差异。 结果13只兔饲养喂养过程中死亡3只,麻醉时死亡2只,其余8只均造模成功,成功率为62%(8/13);实验组的各项血脂指标呈不同程度的升高:胆固醇(52.50±15.39 mmo1/L)、甘油三酯(5.19±3.85 mmo1/L)、高密度脂蛋白(11.10±5.17 mmo1/L)、低密度脂蛋白(33.43±16.40 mmo1/L);对照组WSS为(17.03±1.14)×10-2 Pa、流速12.28±2.51 cm/s、血流率4.51±1.13 mL/s;实验组WSS为(28.79±3.50)×10-2 Pa、流速22.31±6.24 cm/s、血流率5.79±1.89 mL/s,其中对照组与实验组主动脉WSS及平均流速差异均具有统计学意义(P<0.05)。 结论PC-MRI技术可用于在体血流动力学分析以及评价动脉血流动力学改变所致的动脉粥样硬化。 -
关键词:
- 相位对比磁共振定量血流测定技术 /
- 壁切应力 /
- 动脉粥样硬化
Abstract:ObjectiveTo investigate the feasibility of phase-contrast magnetic resonance imaging (PC-MRI) for hemodynamic analysis in vivo and assessment of arterial hemodynamics-induced atherosclerosis. MethodsThirteen healthy adult rabbits were purchased from the Animal Center of Southern Medical University. Four rabbits were randomly selected as the blank group. The 4 rabbits of blank groups were fed together with 9 other rabbits with high-fat diets after receiving the first experimental data. Thirteen rabbits were given high-fat feeding for 2-6 months as an experimental group. The rabbits were withdrawing 7 mL blood for viscosity test before being anesthetized. Then, the rabbits were fixed on a plate and scanned by the coronal T2WI sequence. The aorta (above the bifurcation of the rabbit renal artery 1 cm.) was selected as the target vessel segment which were scanned by the PC-MRI scan quantitative blood flow measurement techniques. The cross-sectional blood phase and amplitude maps of the abdominal aorta were obtained and selected as the analysis images. The hemodynamic parameters processing software was used to process the phase amplitude maps of the blank group and the experimental group. The wall shear stress (WSS), mean velocity and mean flow-rate were explored. ResultsDuring the high-fat feeding, 3 rabbits died of unexplained, 2 rabbits died of anesthesia, 8 rabbits successfully established the atherosclerotic models, with success rate of 62% (8/13). The blood lipids of the experimental group increased to varying degrees: CHO (52.50±15.39 mmo1/L)、TG (5.19±3.85 mmo1/L)、HDL-C (11.10±5.17 mmo1/L)、LDL-C (33.43±16.40 mmo1/L). Blank group:WSS was (17.03±1.14)×10-2 Pa, mean flow rate was 12.28±2.51 cm/s, mean flow rate was 4.51±1.13 mL/s. Experimental group: WSS was (28.79±3.50)×10-2 Pa, mean flow rate was 22.31±6.24 cm/s, mean flow rate was 5.79±1.89 mL/s. The differences of aortic WSS and the mean flow rate between control group and experimental group were significant (P<0.05). ConclusionThe PC-MRI can be used for hemodynamic analysis in vivo and assessment of atherosclerosis caused by arterial hemodynamic changes. -
表 1 兔血中胆固醇、三酰甘油、高密度脂蛋白、低密度脂蛋白的变化(mmo1/L)
指标 A1 A2 B1 B2 C1 C2 D1 E1 Mean±SD 胆固醇 32.31 59.15 49.30 37.51 44.60 81.60 59.65 55.90 52.50±15.39 甘油三酯 0.81 5.81 3.64 0.59 5.00 11.40 4.46 9.80 5.19±3.85 高密度脂蛋白 6.31 7.14 8.35 6.82 13.60 21.10 10.37 15.10 11.10±5.17 低密度脂蛋白 21.48 30.65 19.15 20.47 39.60 68.10 26.29 41.7 33.43±16.40 表 2 兔高脂喂养前、后主动脉壁WSS的比较及病理对照表
指标 A1 A2 B1 B2 C1 C2 D1 E1 高脂喂养前WSS(×10−2 Pa) 15.53 − − − 17.33 20.15 − 15.13 高脂喂养后WSS(×10−2 Pa) 22.21 38.20 27.87 31.80 22.33 47.31 22.88 17.52 主动脉病理 2 1 3 1 3 3 1 3 F 4.60 P 0.045 病理结果:脂纹期=1,纤维斑块期=2,粥样硬化期=3,复合病变=4. 表 3 兔高脂喂养前、后主动脉血流平均流速比较(cm/s)
指标 A1 A2 B1 B2 C1 C2 D1 E1 高脂喂养前平均流速 13.23 − − − 15.34 10.81 − 9.73 高脂喂养后平均流速 16.76 32.69 18.60 17.39 30.06 23.53 16.46 22.98 表 4 兔高脂喂养前、后主动脉血流率比较(mL/s)
指标 A1 A2 B1 B2 C1 C2 D1 E1 高脂喂养前血流率 5.77 − − − 5.17 3.59 − 3.50 高脂喂养后血流率 6.10 9.57 4.01 5.13 4.13 6.22 4.19 6.98 -
[1] 李 晓, 刘晓晟. 局部血流动力学与颈动脉斑块相关性的影像技术研究[J]. 国际医学放射学杂志, 2016, 39(5): 535-8. [2] Katakami N. Utility of carotid wall shear stress as a predictor of coronary atherosclerosis[J]. J Atheroscler Thromb, 2016, 23(3): 290-1. doi: 10.5551/jat.ED029 [3] Rishi P, Leong DP, Nicholls SJ, et al. Coronary artery wall shear stress is associated with endothelial dysfunction and expansive arterial remodelling in patients with coronary artery disease[J]. EuroIntervention, 2015, 10(12): 1440-8. [4] Reneman RS, Arts T, Hoeks AP. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory[J]. J Vasc Res, 2006, 43(3): 251-69. doi: 10.1159/000091648 [5] Samady H, Eshtehardi P, Mcdaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease[J]. Circulation, 2011, 124(7): 779-88. doi: 10.1161/CIRCULATIONAHA.111.021824 [6] Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease[J]. J Neurosurg, 2010, 112(6): 1240-53. doi: 10.3171/2009.10.JNS09759 [7] Zhang B, Gu JY, Qian M, et al. Study of correlation between wall shear stress and elasticity in atherosclerotic carotid arteries[J]. Biomed Eng Online, 2018, 17(1): 5-14. doi: 10.1186/s12938-017-0431-y [8] Zhang B, Gu J, Qian M, et al. Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries[J]. Biomed Eng Online, 2017, 16(1): 137-49. doi: 10.1186/s12938-017-0425-9 [9] 张孟婷, 张亚林. MRA诊断脑血管疾病的影像学分析与近远期预后评价[J]. 影像研究与医学应用, 2018, 2(3): 42-3. doi: 10.3969/j.issn.2096-3807.2018.03.024 [10] 聂智品, 韩金涛. HR-MRI评估大脑中动脉粥样硬化性狭窄程度的价值探讨[J]. 中国CT和MRI杂志, 2017, 15(10): 4-6, 17. doi: 10.3969/j.issn.1672-5131.2017.10.002 [11] 蒋春秀, 黄凡衡, 黄钟情, 等. 3D-VISTA在自发性头颈动脉夹层中的诊断价值[J]. 临床放射学杂志, 2017, 36(4): 475-9. [12] Cheng CP, Parker D, Taylor CA. Quantification of wall shear stress in large blood vessels using lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging[J]. Ann Biomed Eng, 2002, 30(8): 1020-32. doi: 10.1114/1.1511239 [13] Peng SL, Shih CT, Huang CW, et al. Optimized analysis of blood flow and wall shear stress in the common carotid artery of rat model by phase-contrast MRI[J]. Sci Rep, 2017, 7(1): 5253-62. doi: 10.1038/s41598-017-05606-4 [14] Greil G, Geva T, Maier SE, et al. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements[J]. J Magnet Resonan Imag, 2002, 15(1): 47-54. doi: 10.1002/(ISSN)1522-2586 [15] 刘 辉, 梁长虹. 相位对比磁共振血流测量原理、影响因素及在心血管疾病中的应用[J]. 中国医学影像技术, 2009, 25(12): 2309-11. doi: 10.3321/j.issn:1003-3289.2009.12.046 [16] 荆利娜, 高培毅, 林 燕, 等. 基于磁共振成像的颈动脉粥样硬化斑块局部血流动力学平台研究[J]. 中国现代神经疾病杂志, 2014, 14(7): 608-14. doi: 10.3969/j.issn.1672-6731.2014.07.011 [17] 黄志芳, 陈 明, 张宇辉, 等. 家兔颈动脉粥样硬化壁面剪应力分布及作用的探讨[J]. 中华超声影像学杂志, 2014, 23(3): 247-53. doi: 10.3760/cma.j.issn.1004-4477.2014.03.023 [18] 杨 琼, 唐志晗, 武春艳, 等. 异常剪切应力促兔颈总动脉粥样硬化模型的建立[J]. 中南医学科学杂志, 2011, 39(3): 258-61. doi: 10.3969/j.issn.2095-1116.2011.03.005 [19] Cattaruzza M, Wagner AH, Hecker M. Mechanosensitive pro-inflammatory gene expression in vascular cells[M]. Dordrecht: Springer Netherlands, 2012: 59-86. [20] Jadlowiec C, Dardik A. Shear stress and endothelial cell retention in critical lower limb ischemia[M]. London: Springer London, 2013: 107-16. [21] Evans PC, Kwak BR. Biomechanical factors in cardiovascular disease[J]. Cardiovasc Res, 2013, 99(2): 229-31. doi: 10.1093/cvr/cvt143 [22] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J]. JAMA, 1999, 282(21): 2035-42. doi: 10.1001/jama.282.21.2035 [23] Wang C, Baker BM, Chen CS, et al. Endothelial cell sensing of flow direction[J]. Arterioscler Thromb Vasc Biol, 2013, 33(9): 2130-6. doi: 10.1161/ATVBAHA.113.301826 [24] Steward J, Tambe D, Hardin C, et al. Fluid shear, intercellular stress, and endothelial cell alignment[J]. Am J Physiol Cell Physiol, 2015, 308(8): C657-64. doi: 10.1152/ajpcell.00363.2014 [25] Ohta S, Inasawa S, Yamaguchi Y. Alignment of vascular endothelial cells as a collective response to shear flow[J]. J Phys D Appl Phys, 2015, 48(24): 245401-16. doi: 10.1088/0022-3727/48/24/245401 [26] Suzuki Y, Yamamoto K, Ando J, et al. Arterial shear stress augments the differentiation of endothelial progenitor cells adhered to VEGF-bound surfaces[J]. Biochem Biophys Res Commun, 2012, 423(1): 91-7. doi: 10.1016/j.bbrc.2012.05.088 [27] 何红平, 赵茜茜, 李彬, 等. 剪切应力对生长在微图案表面内皮细胞骨架排列、黏附、迁移和凋亡的影响[J]. 中国组织工程研究, 2017, 21(26): 4240-5. doi: 10.3969/j.issn.2095-4344.2017.26.024