留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

ceRNAs在结直肠癌中的研究进展

段巧斌 俞金龙

段巧斌, 俞金龙. ceRNAs在结直肠癌中的研究进展[J]. 分子影像学杂志, 2018, 41(4): 499-503. doi: 10.12122/j.issn.1674-4500.2018.04.18
引用本文: 段巧斌, 俞金龙. ceRNAs在结直肠癌中的研究进展[J]. 分子影像学杂志, 2018, 41(4): 499-503. doi: 10.12122/j.issn.1674-4500.2018.04.18
Qiaobin DUAN, Jinlong YU. Progress of CeRNAs in colorectal cancer[J]. Journal of Molecular Imaging, 2018, 41(4): 499-503. doi: 10.12122/j.issn.1674-4500.2018.04.18
Citation: Qiaobin DUAN, Jinlong YU. Progress of CeRNAs in colorectal cancer[J]. Journal of Molecular Imaging, 2018, 41(4): 499-503. doi: 10.12122/j.issn.1674-4500.2018.04.18

ceRNAs在结直肠癌中的研究进展

doi: 10.12122/j.issn.1674-4500.2018.04.18
基金项目: 广东省自然科学基金(2017A030313533)
详细信息
    作者简介:

    段巧斌,硕士研究生,E-mail: 1451914664@qq.com

    通讯作者:

    俞金龙,主任医师,教授,硕士生导师,E-mail: yujinlong640506@163.com

Progress of CeRNAs in colorectal cancer

  • 摘要: 结直肠癌在我国乃至全球范围发生率和死亡率都居于前列,严重危害着人体的健康,虽然结直肠癌的诊断和治疗技术不断提高,但中晚期结直肠癌患者的生存期仍然不佳,因此需要深入理解结直肠癌的发生发展机制,竞争内源性RNA理论的提出加深了对肿瘤形成机制的理解。竞争内源性RNA理论认为假基因转录本、长链非编码RNA、环状RNA、mRNA能作为竞争性内源性RNA,它们拥有编码蛋白mRNA相同microRNA反应元件,能竞争结合microRNA的结合位点,影响功能蛋白的表达而发挥促癌或抑癌的作用。近来大量研究表明竞争性内源性RNA分子在结直肠癌恶性行为中发挥重要功能,因此有必要对这些研究进行归纳梳理,本文目的在于将这些在结直肠癌中研究的竞争性内源性RNA分子进行归类,并阐述这些分子在结直肠癌中的作用。

     

  • [1] Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39(8): 1033-7 doi: 10.1038/ng2079
    [2] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells[J]. Nat Methods, 2007, 4(9): 721-6 doi: 10.1038/nmeth1079
    [3] Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language[J]. Cell, 2011, 146(3): 353-8 doi: 10.1016/j.cell.2011.07.014
    [4] Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-52 doi: 10.1038/nature12986
    [5] Qi X, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical implications[J]. J Med Genet, 2015, 52(10): 710-8 doi: 10.1136/jmedgenet-2015-103334
    [6] Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry[J]. Cancer Discov, 2013, 3(10): 1113-21 doi: 10.1158/2159-8290.CD-13-0202
    [7] Favoriti P, Carbone G, Greco M, et al. Worldwide burden of colorectal cancer: a review[J]. Updates Surg, 2016, 68(1): 7-11 doi: 10.1007/s13304-016-0359-y
    [8] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-32 doi: 10.3322/caac.21338
    [9] Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3): 177-82 doi: 10.3322/caac.v67.3
    [10] 中华人民共和国卫生和计划生育委员会医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2015版)[J]. 中华消化外科杂志, 2015, 14(10): 783-99 doi: 10.3760/cma.j.issn.1673-9752.2015.10.001
    [11] 蔡国响, 戴卫星, 蔡三军. 结直肠癌多学科综合治疗的现状与未来[J]. 中华胃肠外科杂志, 2016, 19(6): 607-11 doi: 10.3760/cma.j.issn.1671-0274.2016.06.002
    [12] Tan JY, Marques AC. Chapter three - the miRNA-Mediated Cross-Talk between transcripts provides a novel layer of posttranscriptional regulation[J]. Adv Genet, 2014, 85(8): 149-99
    [13] Volinia S, Galasso M, Costinean S, et al. Reprogramming of miRNA networks in cancer and leukemia[J]. Genome Res, 2010, 20(5): 589-99 doi: 10.1101/gr.098046.109
    [14] Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy[J]. Nat Rev Genet, 2016, 17(5): 272-83 doi: 10.1038/nrg.2016.20
    [15] LI XJ, GUO AM, JI LJ, et al. Pseudogene in cancer: real functions and promising signature[J]. J Med Genet, 2015, 52(1): 17-24 doi: 10.1136/jmedgenet-2014-102785
    [16] Dunham I, Kundaje A, Aldred SF, et al. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414): 57-74 doi: 10.1038/nature11247
    [17] Pink RC, Wicks K, Caley DP, et al. Pseudogenes: Pseudo-functional or key regulators in health and disease[J]. Rna, 2011, 17(5): 792-98 doi: 10.1261/rna.2658311
    [18] Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology[J]. Nature, 2010, 465(7301): 1033-8 doi: 10.1038/nature09144
    [19] Yu G, Yao W, Gumireddy K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression[J]. Mol Cancer Ther, 2014, 13(12): 3086-97 doi: 10.1158/1535-7163.MCT-14-0245
    [20] Gao L, Ren W, Zhang L, et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma[J]. Mol Carcinog, 2017, 56(4): 1322-34 doi: 10.1002/mc.v56.4
    [21] Li RK, Gao J, Guo LH, et al. PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer[J]. Cancer Gene Ther, 2017, 24(7): 309-15 doi: 10.1038/cgt.2017.29
    [22] Ye X, Fan F, Bhattacharya R, et al. VEGFR-1 pseudogene expression and regulatory function in human colorectal cancer cells[J]. Mol Cancer Res, 2015, 13(9): 1274-82 doi: 10.1158/1541-7786.MCR-15-0061
    [23] Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385): 339-46 doi: 10.1038/nature10887
    [24] Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease[J]. Cell Mol Life Sci, 2016, 73(13): 2491-509 doi: 10.1007/s00018-016-2174-5
    [25] Yang W, Ning N, Jin X. The lncRNA H19 promotes cell proliferation by competitively binding to miR-200a and derepressing β-Catenin expression in colorectal cancer[J]. Biomed Res Int, 2017, 24(7): 2767484-93
    [26] Lian YF, Xu YT, Xiao CX, et al. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN[J]. Scientific Reports, 2017, 32(7): 332-9
    [27] Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385): 339-46
    [28] Han D, Wang M, Ma N, et al. Long noncoding RNAs: Novel players in colorectal cancer[J]. Cancer Letters, 2015, 361(1): 13-21 doi: 10.1016/j.canlet.2015.03.002
    [29] Schmitt AM, Chang HY. Long Noncoding RNAs in cancer Pathways[J]. Cancer Cell, 2016, 29(4): 452-63 doi: 10.1016/j.ccell.2016.03.010
    [30] Yang W, Ning N, Jin X. The lncRNA H19 promotes cell proliferation by competitively binding to miR-200a and derepressing beta-Catenin expression in colorectal cancer[J]. Biomed Res Int, 2017, 20(7): 2767484-9
    [31] Bian ZH, Jin LG, Zhang JW, et al. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p[J]. Scientific Reports, 2016, 29(6): 602-11
    [32] Chen DL, Chen LZ, Lu YX, et al. Long noncoding RNA XIST expedites metastasis and modulates epithelial-mesenchymal transition in colorectal cancer[J]. Cell Death Dis, 2017, 8(8): e3011-5 doi: 10.1038/cddis.2017.421
    [33] Chen DL, Lu YX, Zhang JX, et al. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression[J]. Theranostics, 2017, 7(19): 4836-49 doi: 10.7150/thno.20942
    [34] Gao HY, Song XD, Kang T, et al. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer[J]. Oncotargets and Therapy, 2017, 10(2): 205-16
    [35] Han P, Li JW, Zhang BM, et al. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/beta-catenin signaling[J]. Molecul Cancer, 2017, 16(4): 412-20
    [36] Huang GL, Wu XL, Li S, et al. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer[J]. Scientific Reports, 2016, 23(6): 602-9
    [37] Xu J, Zhao J, Zhang R. The Novel Long Noncoding RNA TUSC7 Inhibits Proliferation by Sponging MiR-211 in colorectal cancer[J]. Cellul Physiol Biochem, 2017, 41(2): 635-44 doi: 10.1159/000457938
    [38] Liu ML, Zhang Q, Yuan X, et al. Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer[J]. World J Gastroenterol, 2018, 24(9): 1004-12 doi: 10.3748/wjg.v24.i9.1004
    [39] Guo JU, Agarwal V, Guo HL, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7): 409-13 doi: 10.1186/s13059-014-0409-z
    [40] Li Y, Zheng QP, Bao CY, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-4 doi: 10.1038/cr.2015.82
    [41] Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-8 doi: 10.1016/j.canlet.2015.06.003
    [42] Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187(11): 31-44
    [43] Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J]. Oncotarget, 2016, 7(18): 26680-91
    [44] Zhang XL, Xu LL, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1[J]. Cell Biol Int, 2017, 41(9): 1056-64 doi: 10.1002/cbin.v41.9
    [45] Zhou YF, Huang GL, Zhu H, et al. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-Catenin pathway[J]. PLoS One, 2015, 10(6): e0131225-9 doi: 10.1371/journal.pone.0131225
    [46] Guo JN, Li J, Zhu CL, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer[J]. Onco Targets Ther, 2016, 9(4): 7451-8
    [47] Hsiao KY, Lin YC, Gupta SK, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis[J]. Cancer Res, 2017, 77(9): 2339-50 doi: 10.1158/0008-5472.CAN-16-1883
    [48] Weng WH, Wei Q, Toden S, et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer[J]. Clinical Cancer Research, 2017, 23(14): 3918-28 doi: 10.1158/1078-0432.CCR-16-2541
    [49] Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma[J]. Cell, 2011, 147(2): 382-95 doi: 10.1016/j.cell.2011.09.032
    [50] Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. Cell, 2011, 147(2): 344-57 doi: 10.1016/j.cell.2011.09.029
    [51] Liu K, Guo L, Guo Y, et al. AEG-13'-untranslated region functions as a ceRNA in inducing epithelial-mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity[J]. Eur J Cell Biol, 2015, 94(1): 22-31 doi: 10.1016/j.ejcb.2014.10.006
    [52] Jeyapalan Z, Deng Z, Shatseva T, et al. Expression of CD443′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis[J]. Nucleic Acids Research, 2011, 39(8): 3026-41 doi: 10.1093/nar/gkq1003
    [53] Yang J, Li T, Gao C, et al. FOXO13′UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity[J]. FEBS Letters, 2014, 588(17): 3218-24 doi: 10.1016/j.febslet.2014.07.003
    [54] Sureban SM, May R, Ramalingam S, et al. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism[J]. Gastroenterology, 2009, 137(2): 649-59 doi: 10.1053/j.gastro.2009.05.004
    [55] Li D, Yang ZK, Bu JY, et al. OCT4B modulates OCT4A expression as ceRNA in tumor cells[J]. Oncol Rep, 2015, 33(5): 2622-30 doi: 10.3892/or.2015.3862
  • 加载中
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  425
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-07
  • 刊出日期:  2018-11-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日