x
Volume 41 Issue 2
May  2018
Turn off MathJax
Article Contents
Lumao HUANG, Xuegang XIN. Research progress of real-time identification of ureter during abdominal surgery[J]. Journal of Molecular Imaging, 2018, 41(2): 189-195. doi: 10.3969/j.issn.1674-4500.2018.02.14
Citation: Lumao HUANG, Xuegang XIN. Research progress of real-time identification of ureter during abdominal surgery[J]. Journal of Molecular Imaging, 2018, 41(2): 189-195. doi: 10.3969/j.issn.1674-4500.2018.02.14

Research progress of real-time identification of ureter during abdominal surgery

doi: 10.3969/j.issn.1674-4500.2018.02.14
  • Received Date: 2018-01-28
  • Publish Date: 2018-04-01
  • Rare as iatrogenic ureteral injuries are during abdominal surgery, injury can cause serious complications, such as abdominal infection, ureter fistula, kidney failure, etc. In order to reduce the risk of iastrogenic ureteral injury, medical imaging technologies which enable real-time ureter visualization have been widely studied and clinically applied, such as prophylactic ureteral catheterization (or luminant ureteral stent), gamma detection technique, and fluorescence imaging technology. However, at present only fluorescence imaging technology can acquire the location information through real-time ureter visualization while being non-invasive and having no ionizing radiation. Relevant studies have proved that real-time identification of the ureter during surgery using fluorescence imaging technology combined with exogenous fluorescence dye is feasible and have made important progresses. This review summarizes the recent progress in the research of real-time identification of ureter using fluorescence imaging technology and exogenous fluorescent dye (fluorescein sodium, methylene blue, indocyanine, CW800-CA, and ZW800-1) during abdominal surgery.

     

  • loading
  • [1]
    Portnoy E, Nizri E, Golenser J, et al. Imaging the urinary pathways in mice by liposomal indocyanine green[J]. Nanomedicine, 2015, 11(5): 1057-64. doi: 10.1016/j.nano.2015.02.019
    [2]
    Al-Taher M, van Bos J, Schols RM, et al. Fluorescence ureteral visualization in human laparoscopic colorectal surgery using methylene blue[J]. J Laparoendosc Adv Surg Tech, 2016, 26(11): 870-5. doi: 10.1089/lap.2016.0264
    [3]
    Berland TL, Smith SL, Metzger PP, et al. Intraoperative gamma probe localization of the ureters: a novel concept[J]. J Am Coll Surg, 2007, 205(4): 608-11. doi: 10.1016/j.jamcollsurg.2007.04.017
    [4]
    Bothwell WN, Bleicher RJ, Dent TL. Prophylactic ureteral catheterization in colon surgery[J]. Dis Colon Rectum, 1994, 37(4): 330-4. doi: 10.1007/BF02053592
    [5]
    Chahin F, Dwivedi AJ, Paramesh A, et al. The implications of lighted ureteral stenting in laparoscopic colectomy[J]. J Society Laparoendosc Surgeons, 2002, 6(1): 49-52. https://www.researchgate.net/profile/Anil_Paramesh/publication/11369272_The_Implications_of_Lighted_Ureteral_Stenting_in_Laparoscopic_Colectomy/links/0c96051630658df917000000.pdf
    [6]
    Licha K. Contrast agents for optical imaging[M]. Springer Berlin Heidelberg, 2002: 1-29.
    [7]
    Frangioni JV. In vivo near-infrared fluorescence imaging[J]. Curr Opin Chem Biol, 2003, 7(5): 626-34. doi: 10.1016/j.cbpa.2003.08.007
    [8]
    Keereweer S, van Driel PB, Snoeks TJ, et al. Optical Image-Guided cancer surgery: challenges and limitations[J]. Clinical Cancer Research, 2013, 19(14): 3745-54. doi: 10.1158/1078-0432.CCR-12-3598
    [9]
    te Velde EA, Veerman T, Subramaniam V, et al. The use of fluorescent dyes and probes in surgical oncology[J]. Eur J Surg Oncol, 2010, 36(1): 6-15. doi: 10.1016/j.ejso.2009.10.014
    [10]
    Licha K. Contrast agents for optical imaging[J]. Top Curr Chem, 2002, (222): 1-29. doi: 10.1007/3-540-46009-8_1
    [11]
    Keereweer S, Kerrebijn JD, van Driel PB, et al. Optical image-guided Surgery-Where do we stand[J]. Molecul Imag Biol, 2011, 13(2): 199-207. doi: 10.1007/s11307-010-0373-2
    [12]
    Tanaka E, Chen FY, Flaumenhaft R, et al. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging[J]. J Thorac Cardiovasc Surg, 2009, 138(1): 133-40. doi: 10.1016/j.jtcvs.2008.09.082
    [13]
    Yaqoob Z, Mcdowell E, Wu J, et al. Molecular contrast optical coherence tomography:A pump-probe scheme using[J]. J Biomed Optics, 2006, 11(5): 1083-96.
    [14]
    Su DD, Teoh CL, Samanta A, et al. The development of a highly photostable and chemically stable zwitterionic near-infrared dye for imaging applications[J]. Chemical Communications, 2015, 51(19): 3989-92. doi: 10.1039/C4CC08814J
    [15]
    Winer JH, Choi HS, Gibbs-Strauss SL, et al. Intraoperative localization of insulinoma and normal pancreas using invisible near-infrared fluorescent light[J]. Ann Surg Oncol, 2010, 17(8):210-24.
    [16]
    Shah SM, Tatlpinar S, Quinlan E, et al. Dynamic and quantitative analysis of choroidal neovascularization by fluorescein angiography[J]. Invest Ophthalmol Vis Sci, 1994, 47(8): 51-2.
    [17]
    Sykes SO, Bressler NM, Maguire MG, et al. Detecting recurrent choroidal neovascularization: comparison of clinical examination with and without fluorescein angiography[J]. Arch Ophthalmol, 1994, 112(6): 51-2. https://jhu.pure.elsevier.com/en/publications/detecting-recurrent-choroidal-neovascularization-comparison-of-cl-3
    [18]
    Takayama T, Wanibuchi Y, Suma H, et al. Intraoperative coronary angiography using fluorescein[J]. Ann Thorac Surg, 1991,126(51): 140-3.
    [19]
    Takayama T, Wanibuchi Y, Suma H, et al. Intraoperative coronary angiography using fluorescein: basic studies and clinical application[J]. Vascular Endovascular Surg, 1994, 26(9): 51-2.
    [20]
    Udshmadshuridze NS, Asikuri TO. Intra-operative imaging of the ureter with Sodium fluorescein[J]. Zeitschrift Urolog Nephrolog, 1988, 81 (10): 635-9. https://www.researchgate.net/publication/19917577_Intra-operative_imaging_of_the_ureter_with_sodium_fluorescein
    [21]
    Dip FD, Nahmod M, Suarez Anzorena FA, et al. Novel technique for identification of ureters using Sodium fluorescein[J]. Surg Endosc Intervent Techn, 2014, 28(9): 2730-3. doi: 10.1007/s00464-014-3519-5
    [22]
    Matsui A, Tanaka E, Choi HS, et al. Real-time intraoperative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically-available contrast agents[J]. Surgery, 2010, 148(8): 6-14.
    [23]
    Matsui A, Tanaka E, Choi HS, et al. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue[J]. Surgery, 2010, 148(1): 78-86. doi: 10.1016/j.surg.2009.12.003
    [24]
    Verbeek FP, van der Vorst JR, Schaafsma BE, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience[J]. J Urol, 2013, 190(2): 574-9. doi: 10.1016/j.juro.2013.02.3187
    [25]
    Yeung TM, Volpi D, Tullis ID, et al. Identifying ureters in situ under fluorescence during laparoscopic and open colorectal surgery[J]. Ann Surg, 2016, 263(1): e1-2. doi: 10.1097/SLA.0000000000001513
    [26]
    Al Taher M, van Bos J, Schols RM, et al. Fluorescence ureteral visualization in human laparoscopic colorectal surgery using methylene blue[J]. J Laparoendosc Adv Surg Tech, 2016, 26(11): 870-5. doi: 10.1089/lap.2016.0264
    [27]
    Agarwal A. Fundus fluorescein and indocyanine green angiography: a textbook and atlas[J]. Slack Inc, 2007, 15(9): 51-2. http://www.worldcat.org/title/fundus-fluorescein-and-indocyanine-green-angiography-a-textbook-and-atlas/oclc/156863721
    [28]
    Matsui A, Lee BT, Winer JH, et al. Real-time intraoperative near-infrared fluorescenceangiography for perforator identification and flap design[J]. Plast Reconstr Surg, 2009, 12(3): 125-7. http://journals.lww.com/plasreconsurg/pages/imagegallery.aspx?year=2009&issue=03000&article=00083
    [29]
    Troyan SL, Kianzad V, Gibbs-Strauss SL, et al. The FLARE((TM)) intraoperative Near-Infrared fluorescence imaging system: a First-in-Human clinical trial in breast cancer sentinel lymph node mapping[J]. Ann Surg Oncol, 2009, 16(10): 2943-52. doi: 10.1245/s10434-009-0594-2
    [30]
    Nimura H, Narimiya N, Mitsumori N, et al. Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer[J]. Br J Surg, 2004, 91(5): 575-9. doi: 10.1002/(ISSN)1365-2168
    [31]
    Miyashiro I, Miyoshi N, Hiratsuka M, et al. Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging[J]. Ann Surg Oncol, 2008, 15(6): 1640-3. doi: 10.1245/s10434-008-9872-7
    [32]
    Kusano M, Tajima Y, Yamazaki K, et al. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer[J]. Dig Surg, 2008, 25(2): 103-8. doi: 10.1159/000121905
    [33]
    Fujiwara M, Mizukami T, Suzuki A, et al. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green:preliminary experience[J]. J Plast Reconstr Aesthet Surg, 2008,71(5): 147-55.
    [34]
    Tsujino Y, Mizumoto K, Matsuzaka Y, et al. Fluorescence navigation with indocyanine green for detecting sentinel nodes in extramammary Paget's disease and squamous cell carcinoma[J]. J Dermatol, 2009, 36(2): 90-4. doi: 10.1111/jde.2009.36.issue-2
    [35]
    Kitai T, Inomoto T, Miwa M,et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer[J]. Breast Cancer, 2005,12(11): 211-5. doi: 10.2325/jbcs.12.211
    [36]
    Unno N, Inuzuka K, Suzuki M, et al. Preliminary evidence with a novel fluorescence lymphography using indocyanine green fluorescence lymphography[J]. J Vasc Surg, 2007, 4(5): 1016-21.
    [37]
    Tagaya N, Yamazaki R, Nakagawa A, et al. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer[J]. Am J Surg, 2008,19(5): 850-3.
    [38]
    Unno N, Nishiyama M, Suzuki M, et al. Quantitative lymph imaging for assessment of lymph function using indocyanine green fluorescence lymphography[J]. Eur J Vasc Endovasc Surg, 2008, 36(7):230-6. https://www.sciencedirect.com/science/article/pii/S1078588408002281
    [39]
    Troyan SL, Kianzad V, Gibbs-Strauss SL, et al. The FLARE™intraoperative near-infrared fluorescence imaging system:a first-in-human clinical trial in breast cancer sentinel lymph node mapping[J]. Ann Surg Oncol, 2009, 58(16): 2943-52.
    [40]
    Aoki T, Yasuda D, Shimizu Y, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection[J]. World J Surg, 2008, 32(8): 1763-7. doi: 10.1007/s00268-008-9620-y
    [41]
    Frangioni JV, Tanaka E, Borud LJ. Intraoperative imaging methods: US, 08/076467[P]. 2008.
    [42]
    Tanaka E, Ohnishi S, Laurence RG, et al. Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence[J]. J Urol, 2007, 178(5): 2197-202. doi: 10.1016/j.juro.2007.06.049
    [43]
    Portnoy, Emma. Imaging the urinary pathways in mice by liposomal indocyanine green, nanomedicine:nanotechnology[J]. Biol Med, 2015, 11(5): 1057-64. https://www.sciencedirect.com/science/article/pii/S1549963415000696
    [44]
    Bos VD, Jacqueline. Near-infrared fluorescence laparoscopy of the cystic duct and cystic artery:first experience with two new preclinical dyes in a pig model[J]. Surg Endosc , 2017, 27(4): 1-6. doi: 10.1007/s00464-017-5450-z.pdf
    [45]
    Schols RM, Lodewick TM, Bouvy ND, et al. Application of a new dye for Near-Infrared fluorescence laparoscopy of the ureters: demonstration in a pig model[J]. Dis Colon Rectum, 2014, 57(3): 407-11. doi: 10.1097/DCR.0000000000000055
    [46]
    Korb ML, Huh WK, Boone JD, et al. Laparoscopic fluorescent visualization of the ureter with intravenous IRDye800CW[J]. J Minim Invasive Gynecol, 2015, 22(5): 799-806. doi: 10.1016/j.jmig.2015.03.008
    [47]
    Tanaka E, Choi HS, Fujii H, et al. Imageguided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping[J]. Ann Surg Oncol, 2006, 13(9): 1671-81. doi: 10.1245/s10434-006-9194-6
    [48]
    Ashitate Y, Stockdale A, Choi HS, et al. Real-Time simultaneous Near-Infrared fluorescence imaging of bile duct and arterial anatomy[J]. J Surg Res, 2012, 176(1): 7-13. doi: 10.1016/j.jss.2011.06.027
    [49]
    Choi HS, Nasr K, Alyabyev S, et al. Synthesis and in vivo fate of zwitterionic Near-Infrared fluorophores[J]. Angewandt Chem Intern Edit, 2011, 50(28): 6258-63. doi: 10.1002/anie.201102459
    [50]
    Hyun H, Bordo MW, Nasr K, et al. cGMP-Compatible preparative scale synthesis of near-infrared fluorophores[J]. Contrast Media Mol Imaging, 2012, 7(6): 516-24. doi: 10.1002/cmmi.v7.6
    [51]
    Choi HS, Gibbs SL, Lee JH, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J]. Nat Biotechnol, 2013, 31(2): 148-53. doi: 10.1038/nbt.2468
    [52]
    Verbeek, Floris PR. Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe[J]. Annal Surg Oncol, 2014, 21 (8): 528-37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1605) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return