留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

3D生物打印在口腔颌面部的应用前景

姚洁 蔡礼钊 刘湘宁 王亚玉 赖仁发

姚洁, 蔡礼钊, 刘湘宁, 王亚玉, 赖仁发. 3D生物打印在口腔颌面部的应用前景[J]. 分子影像学杂志, 2018, 41(3): 302-305. doi: 10.3969/j.issn.1674-4500.2018.03.04
引用本文: 姚洁, 蔡礼钊, 刘湘宁, 王亚玉, 赖仁发. 3D生物打印在口腔颌面部的应用前景[J]. 分子影像学杂志, 2018, 41(3): 302-305. doi: 10.3969/j.issn.1674-4500.2018.03.04
Jie YAO, Lizhao CAI, Xiangning LIU, Yayu WANG, Renfa LAI. Application prospect of 3D bio-printing in maxillofacial region[J]. Journal of Molecular Imaging, 2018, 41(3): 302-305. doi: 10.3969/j.issn.1674-4500.2018.03.04
Citation: Jie YAO, Lizhao CAI, Xiangning LIU, Yayu WANG, Renfa LAI. Application prospect of 3D bio-printing in maxillofacial region[J]. Journal of Molecular Imaging, 2018, 41(3): 302-305. doi: 10.3969/j.issn.1674-4500.2018.03.04

3D生物打印在口腔颌面部的应用前景

doi: 10.3969/j.issn.1674-4500.2018.03.04
详细信息
    作者简介:

    姚洁:姚 洁,在读硕士研究生,E-mail: 2643610559@qq.com

    通讯作者:

    赖仁发,教授,博士生导师,E-mail: Prof.dr.lai@163.com

Application prospect of 3D bio-printing in maxillofacial region

  • 摘要: 3D生物打印是利用数字化影像技术将临床获取的医学影像转换为二维模式,供计算机辅助设计/计算机辅助制造软件进行逐层打印并叠加的过程。这种自下而上的打印过程中,生物材料和活细胞被精确地带到目标位置,实现复杂结构的精密打印。基于3D打印的高度灵活性,利用该高新技术可以个性化修复患者因创伤、肿瘤、遗传等问题引起的诸如骨缺损、软组织缺损等问题。因此3D打印成为近年来的研究热点之一。本文概述了3D生物打印目前的研究进展,对3D生物打印的特点、打印方式进行论述,综述3D生物打印在口腔颌面部的临床应用,对其未来发展前景进行了总结。

     

  • [1] 宋宇. 三维生物打印技术概述:成像技术和打印技术[J]. 新材料产业, 2017(01): 20-5.
    [2] Jessop ZM, Al-Sabah A, Gardiner MD, et al. 3D bioprinting for reconstructive surgery: Principles, applications and challenges[J]. J Plast Reconstr Aesthet Surg, 2017, 70(9): 1155-70.
    [3] Chia HN, Wu BM. Recent advances in 3D printing of biomaterials[J]. J Biol Eng, 2015, 9: 4.
    [4] Qassemyar Q, Assouly N, Temam S, et al. Use of a three-dimensional custom-made porous Titanium prosthesis for mandibular body Reconstruction[J]. Int J Oral Maxillofac Surg, 2017, 46(10): 1248-51.
    [5] Wang CY, Wang SF, Yao YS, et al. Study on vertical mandibular distraction osteogenesis using Magnesium alloy on canine[J]. In Progress in Natural Science:Materials International, 2014, 24(5): 446-51.
    [6] Hong D, Chou DT, Velikokhatnyi OI, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys[J]. Acta Biomater, 2016, 45: 375-86.
    [7] 司云强, 李宗安, 朱莉娅, 等. 生物陶瓷3D打印技术研究进展[J]. 南京师范大学学报:工程技术版, 2017, 17(01): 1-11.
    [8] Do AV, Khorsand B, Geary SM, et al. 3D printing of scaffolds for tissue regeneration applications[J]. Adv Healthc Mater, 2015, 4(12): 1742-62.
    [9] Gao C, Deng Y, Feng P, et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration[J]. Int J Mol Sci, 2014, 15(3): 4714-32.
    [10] 李佳乐, 夏轶超, 澈力格尔,刘敏,王梓霖,韩冰.三维打印双相磷酸钙陶瓷支架在骨组织工程中的应用[J]. 中国实验诊断学, 2017, 21(05): 878-81.
    [11] Gašparič P, Kurečič M, Kargl R, et al. Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human osteoblasts[J]. Carbohydr Polym, 2017, 177: 388-96.
    [12] Hoover S, Tarafder S, Bandyopadhyay A, et al. Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 763-9.
    [13] Rath SN, Strobel LA, Arkudas A, et al. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic Calcium phosphate scaffolds under static and dynamic culture conditions[J]. J Cell Mol Med, 2012, 16(10): 2350-61.
    [14] Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting using stem cells[J]. Pediatr Res, 2018, 83(1-2): 223-31.
    [15] Rocca M, Fragasso Alessio, Liu WJ, et al. Embedded MultimaterialExtrusionBioprinting[J]. SLAS Technol, 2018, 23(2): 154-63.
    [16] Gao G, Huang Y, Schilling AF, et al. Organ bioprinting: are we there yet?[J]. Adv Healthc Mater, 2018, 7(1): DOI: 10.1002/adhm.201701018
    [17] Li JP, Chen MJ, Fan XQ, et al. Recent advances in bioprinting techniques: approaches, applications and future prospects[J]. J Transl Med, 2016, 14: 271.
    [18] Gu BK, Choi DJ, Park SJ, et al. 3-dimensional bioprinting for tissue engineering applications[J]. Biomaterials research, 2016, 20: 12.
    [19] 宋杨, 王晓飞, 王宇光, 等. 人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨[J]. 北京大学学报:医学版, 2016, 48(1): 45-50.
    [20] Yang X, Lu Z, Wu H, et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018, 83: 195-201.
    [21] Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink[J]. Nat Commun, 2014, 5: 3935.
    [22] Grix T, Ruppelt A, Thomas A, et al. Bioprinting Perfusion-Enabled liver equivalents for advanced Organ-on-a-Chip applications[J]. Genes (Basel), 2018, 9(4): doi: 10.3390/genes9040176.
    [23] Kizawa H, Nagao E, Shimamura M, et al. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery[J]. Biochemistry and biophysics reports, 2017, 10: 186-91.
    [24] Sochol RD, Gupta NR, Bonventre JV. A role for 3D printing in Kidney-on-a-Chip platforms[J]. Current transplantation reports, 2016, 3(1): 82-92.
    [25] Kim BS, Kwon YW, Kong JS, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering[J]. Biomaterials, 2018, 168: 38-53.
    [26] Lee VK, Lanzi AM, Ngo H, et al. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology[J]. Cell Mol Bioeng, 2014, 7(3): 460-72.
    [27] 刘翀, 徐铭恩, 王玲, 等. 基于3D打印细胞培养支架内部血管通道的模拟与构建[J]. 中国生物医学工程学报, 2017, 36(01): 67-74.
    [28] Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink[J]. Biomaterials, 2016, 106: 58-68.
    [29] Jang J. 3D bioprinting and in vitro cardiovascular tissue modeling[J]. Bioengineering (Basel, Switzerland), 2017, 4(3): 71.
    [30] Gulati K, Prideaux M, Kogawa M, et al. Anodized 3D-printed Titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells[J]. J Tissue Eng Regen Med, 2017, 11(12): 3313-25.
    [31] 王宁, 李杰, 王晓龙, 等. 应用3D打印熔融沉积技术制作个性化种植修复体的精确度研究[J]. 华西口腔医学杂志, 2015, 33(05): 509-12.
    [32] Lee UL, Kwon JS, Woo SH, et al. Simultaneous bimaxillary surgery and mandibular Reconstruction with a 3-Dimensional printed Titanium implant fabricated by electron beam melting: a preliminary mechanical testing of the printed mandible[J]. J Oral Maxillofac Surg, 2016, 74(7): 1501.e1-1501.e15.
    [33] Li J, Hsu Y, Luo E, et al. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy[J]. Aesthetic Plast Surg, 2011, 35(4): 636-40.
  • 加载中
计量
  • 文章访问数:  2355
  • HTML全文浏览量:  878
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 刊出日期:  2018-07-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日