留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

CPI203抑制肾癌ACHN细胞增殖及其机制

梁琼仙 胡波 张海红 谭晓军

梁琼仙, 胡波, 张海红, 谭晓军. CPI203抑制肾癌ACHN细胞增殖及其机制[J]. 分子影像学杂志, 2019, 42(2): 253-257. doi: 10.12122/j.issn.1674-4500.2019.02.26
引用本文: 梁琼仙, 胡波, 张海红, 谭晓军. CPI203抑制肾癌ACHN细胞增殖及其机制[J]. 分子影像学杂志, 2019, 42(2): 253-257. doi: 10.12122/j.issn.1674-4500.2019.02.26
Qiongxian LIANG, Bo HU, Haihong ZHANG, Xiaojun TAN. Antitumor activity of CPI203 in renal cell carcinoma ACHN cells and its mechanism[J]. Journal of Molecular Imaging, 2019, 42(2): 253-257. doi: 10.12122/j.issn.1674-4500.2019.02.26
Citation: Qiongxian LIANG, Bo HU, Haihong ZHANG, Xiaojun TAN. Antitumor activity of CPI203 in renal cell carcinoma ACHN cells and its mechanism[J]. Journal of Molecular Imaging, 2019, 42(2): 253-257. doi: 10.12122/j.issn.1674-4500.2019.02.26

CPI203抑制肾癌ACHN细胞增殖及其机制

doi: 10.12122/j.issn.1674-4500.2019.02.26
详细信息
    作者简介:

    梁琼仙,主治医师,E-mail:sdsdlsx@126.com

    通讯作者:

    谭晓军,主任医师,E-mail:sdsdlsx@126.com

Antitumor activity of CPI203 in renal cell carcinoma ACHN cells and its mechanism

  • 摘要: 目的研究CPI203杀伤人肾癌ACHN细胞的能力及潜在机制。方法不同浓度(0、0.1、0.5、1、5 μmol/L)CPI203药物作用于ACHN细胞24、48 h后,采用CCK8试剂盒检测CPI203抑制ACHN细胞增殖效果;采用流式细胞术分析CPI203对ACHN细胞凋亡及细胞周期的影响;划痕实验观察CPI203影响ACHN细胞迁移及侵袭能力;克隆形成实验检测CPI203抑制ACHN细胞克隆集落形成能力;荧光定量PCR法及免疫印迹法分别分析CPI203作用于ACHN细胞后,MYC、NOXA、AKT、ERK、CyclinD1和GSK3β的表达量变化情况。结果CPI203明显抑制肾癌细胞株ACHN细胞增殖,并呈时间及浓度依赖性(P<0.05);CPI203药物可促进ACHN细胞凋亡并抑制细胞生长周期(P<0.05);CPI203呈浓度依赖性地降低ACHN细胞的克隆形成能力及迁移能力(P<0.05);CPI203降低肾癌ACHN细胞中MYC、NOXA、AKT、ERK、CyclinD1和GSK3β表达量减少(P<0.05)。结论CPI203可抑制ACHN细胞增殖,促进肾癌细胞凋亡并抑制其生长周期进展,明显抑制癌细胞迁移及克隆形成能力,其作用机制与CPI203影响肾癌ACHN细胞中MYC、NOXA、AKT、ERK、CyclinD1和GSK3β表达量有关。

     

  • 图  1  ACHN细胞划痕实验

    A: 刚划痕, 不加CPI203处理对照组; B: 刚划痕, 加0.1 μmol/L CPI203处理组; C: 刚划痕,加0.5 μmol/L CPI203处理组; D: 刚划痕, 加1 μmol/L CPI203处理组; E: 刚划痕,加5 μmol/L CPI203处理组; F: 划痕48 h后, 不加CPI203处理对照组; G: 划痕48 h后, 加0.1 μmol/L CPI203处理对照组; H: 划痕48 h后, 加0.5 μmol/L CPI203处理对照组; I: 划痕48 h后, 加1 μmol/L CPI203处理对照组; J: 划痕48 h后, 加5 μmol/L CPI203处理对照组.

    图  2  不同浓度CPI203药物对肾癌ACHN细胞周期(A)及凋亡(B)的影响

    *P<0.05

    图  3  小分子抑制剂CPI203作用于肾癌ACHN细胞后相关基因表达的影响

    CPI203作用于肾癌ACHN细胞后降低MYC、NOXA、AKT、ERK、GSK3β和CyclinD1基因表达量;*P<0.05 vs Control.

    图  4  不同浓度CPI203药物对肾癌ACHN细胞克隆形成能力的影响

    越高浓度的CPI203药物作用于肾癌ACHN细胞后,细胞克隆形成数目越少,*P<0.05 vs 0 μmol/L.

    图  5  小分子抑制剂CPI203作用于肾癌ACHN细胞后相关蛋白表达的影响

    CPI203作用于肾癌ACHN细胞后降低MYC、NOXA、AKT、ERK、GSK3β和CyclinD1蛋白表达量.

    表  1  qRT-PCR引物序列

    Gene Primer sequence(5’-3’)
    MYC Forward primer CACATGCCCAAGATTCACTGATAG
    Reverse primer GAGGTGGCTTGGACAGGTTAG
    GSK3β Forward primer GGCAGCATGAAAGTTAGCAGA
    Reverse primer TTTCTTGATGGCGACCAGTTCT
    ERK Forward primer TGCTCTGCATGTGGTAACTTG
    Reverse primer GAACCCTAGGAGCACTGACATC
    CyclinD1 Forward primer CTGGGTCTGTGCATTTCTGGTT
    Reverse primer CTGCTGGAAACATGCCGGTTA
    AKT Forward primer GGCCTCAGCCCTCAGAAC
    Reverse primer TGCCACATTGCGCATAGCT
    NOXA Forward primer CCAGCAGAGCTGGAAGTCG
    Reverse primer CTTCCGTTTCCAAGGGCACC
    GAPDH Forward primer CCTGCACCACCAACTGCTTAG
    Reverse primer TGAGTCCTTCCACGATACCAA
    下载: 导出CSV

    表  2  CCK8法检测CPI203抑制ACHN细胞增殖效果(%,Mean±SD

    CPI203浓度(μmol/L) 24 h 48 h
    0 100±2.36 100±2.41
    0.1 87.29±0.98* 79.33±1.27*
    0.5 76.52±1.35* 60.45±0.87*
    1 63.24±0.82* 46.28±1.25*
    5 52.61±1.51* 31.42±1.36*
    *P<0.05 vs 0 μmol/L
    下载: 导出CSV
  • [1] Hamaidi I, Coquard C, Danilin S, et al. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma[J]. Oncogene, 2019, 38(1): 60-72. doi: 10.1038/s41388-018-0413-y
    [2] Giuliano S, Cormerais Y, Dufies M, et al. Resistance to sunitinib in renal clear cell carcinoma results from sequestration in lysosomes and inhibition of the autophagic flux[J]. Autophagy, 2015, 11(10): 1891-904. doi: 10.1080/15548627.2015.1085742
    [3] Cheng J, Zhang J, Han YT, et al. Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis[J]. Cancer Res, 2017, 77(21): E91-E100. doi: 10.1158/0008-5472.CAN-17-0313
    [4] Gupta K, Miller JD, Li JZ, et al. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review[J]. Cancer Treat Rev, 2008, 34(3): 193-205. doi: 10.1016/j.ctrv.2007.12.001
    [5] Rowe SP, Gorin MA, Solnes LB, et al. Correlation of(99m)Tc-sestamibi uptake in renal masses with mitochondrial content and multi-drug resistance pump expression[J]. Ejnmm Res, 2017, 7(1): 80-9. doi: 10.1186/s13550-017-0329-5
    [6] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-86. doi: 10.1002/ijc.29210
    [7] Recasens-Zorzo C, Cardesa-Salzmann T, Petazzi P, et al. Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma[J]. Haematologica, 2018, 76(11): 168-77.
    [8] Owen DJ, Ornaghi P, Yang JC, et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p[J]. EMBO J, 2000, 19(22): 6141-9. doi: 10.1093/emboj/19.22.6141
    [9] Chen W, Zhang H, Chen ZF, et al. Development and evaluation of a novel series of Nitroxoline-derived BET inhibitors with antitumor activity in renal cell carcinoma[J]. Oncogenesis, 2018, 7(11): 83-92. doi: 10.1038/s41389-018-0093-z
    [10] Esteve-Arenys A, Valero JG, Chamorro-Jorganes A, et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199(venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma[J]. Oncogene, 2018, 37(14): 1830-44. doi: 10.1038/s41388-017-0111-1
    [11] Abraham SA, Hopcroft LE, Carrick EA, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells[J]. Nature, 2016, 534(767): 341-52.
    [12] Siegel MB, Liu SQ, Davare MA, et al. Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma[J]. Oncotarget, 2015, 6(22): 18921-32.
    [13] Xiang T, Bai JY, She C, et al. Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma[J]. Cell Signal, 2018, 42(6): 106-13.
    [14] Wong C, Laddha SV, Tang L, et al. The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors[J]. Cell Death Dis, 2014, 61(5): e1450-61.
    [15] Ding M, Lu XL, Wang C, et al. The E2F1-miR-520/372/373-SPOP axis modulates progression of renal carcinoma[J]. Cancer Res, 2018, 78(24): 6771-84. doi: 10.1158/0008-5472.CAN-18-1662
    [16] Ljungberg B, Campbell SC, Cho HY, et al. The epidemiology of renal cell carcinoma[J]. Eur Urol, 2011, 60(4): 615-21. doi: 10.1016/j.eururo.2011.06.049
    [17] Schrader AJ, Varga Z, Hegele A, et al. Second-line strategies for metastatic renal cell carcinoma: classics and novel approaches[J]. J Cancer Res Clin Oncol, 2006, 132(3): 137-49. doi: 10.1007/s00432-005-0058-4
    [18] Sun Y, St Clair DK, Xu Y, et al. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells[J]. Cancer Res, 2010, 70(7): 2880-90. doi: 10.1158/0008-5472.CAN-09-4572
    [19] Recasens-Zorzo C, Cardesa-Salzmann T, Petazzi P, et al. Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma[J]. Haematologica, 2018, 76(9): 13-22.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  283
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日