x
Volume 47 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LI Yijie, HAN Yingmei, ZHANG Heng, LÜ Jing, ZHANG Yi, LIN Nan, QIAO Yingbo, WANG Feng. Advances in structural and functional magnetic resonance imaging of subjective cognitive decline[J]. Journal of Molecular Imaging, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18
Citation: LI Yijie, HAN Yingmei, ZHANG Heng, LÜ Jing, ZHANG Yi, LIN Nan, QIAO Yingbo, WANG Feng. Advances in structural and functional magnetic resonance imaging of subjective cognitive decline[J]. Journal of Molecular Imaging, 2024, 47(1): 98-101. doi: 10.12122/j.issn.1674-4500.2024.01.18

Advances in structural and functional magnetic resonance imaging of subjective cognitive decline

doi: 10.12122/j.issn.1674-4500.2024.01.18
Funds:  Supported by National Natural Science Foundation of China(81973930)
  • Received Date: 2023-10-13
    Available Online: 2024-01-23
  • Publish Date: 2024-01-20
  • Subjective cognitive decline is considered to be the first clinical manifestation of the Alzheimer's disease continuum, preceding mild cognitive impairment. Its cognitive changes are characterized by subtle cognitive decline and compensatory cognitive effort, and have been shown to be a high-risk stage of Alzheimer's disease. Studying people with subjective cognitive decline is important to understanding the pathological mechanisms of early Alzheimer's disease and identifying biomarkers associated with subjective cognitive decline, and early diagnosis and intervention can effectively improve patient outcomes. With the advent of advanced neuroimaging techniques such as positron emission tomography and MRI, a growing body of evidence is revealing alterations in brain structure and function associated with symptoms of subjective cognitive decline. This study mainly reviewed the current research status of diagnosis and prediction of subjective cognitive decline from the perspectives of structural magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance imaging and machine learning, in order to reveal its neurophysiological mechanism and provide imaging basis for early diagnosis.

     

  • loading
  • [1]
    Gifford KA, Bell SP, Liu DD, et al. Frailty is related to subjective cognitive decline in older women without dementia[J]. J Am Geriatr Soc, 2019, 67(9): 1803-11. doi: 10.1111/jgs.15972
    [2]
    Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J]. Lancet Neurol, 2007, 6(8): 734-46. doi: 10.1016/S1474-4422(07)70178-3
    [3]
    Jessen F, Amariglio RE, Buckley RF, et al. The characterisation of subjective cognitive decline[J]. Lancet Neurol, 2020, 19(3): 271-8. doi: 10.1016/S1474-4422(19)30368-0
    [4]
    Viviano RP, Damoiseaux JS. Functional neuroimaging in subjective cognitive decline: current status and a research path forward[J]. Alzheimers Res Ther, 2020, 12(1): 23. doi: 10.1186/s13195-020-00591-9
    [5]
    Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(6): 844-52. doi: 10.1016/j.jalz.2014.01.001
    [6]
    Mak E, Gabel S, Mirette H, et al. Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter atrophy to macroscale connectomic changes[J]. Ageing Res Rev, 2017, 35: 250-64. doi: 10.1016/j.arr.2016.10.001
    [7]
    Dong GZ, Yang L, Li CS R, et al. Dynamic network connectivity predicts subjective cognitive decline: the Sino-Longitudinal Cognitive impairment and dementia study[J]. Brain Imag Behav, 2020, 14(6): 2692-707. doi: 10.1007/s11682-019-00220-6
    [8]
    Yue L, Wang T, Wang JY, et al. Asymmetry of hippocampus and amygdala defect in subjective cognitive decline among the community dwelling Chinese[J]. Front Psychiatry, 2018, 9: 226.
    [9]
    Alexopoulos GS. Depression in the elderly[J]. Lancet, 2005, 365(9475): 1961-70. doi: 10.1016/S0140-6736(05)66665-2
    [10]
    Göschel L, Kurz L, Dell'Orco A, et al. 7T amygdala and hippocampus subfields in volumetry-based associations with memory: a 3-year follow-up study of early Alzheimer's disease[J]. NeuroImage, 2023, 38: 103439. doi: 10.1016/j.nicl.2023.103439
    [11]
    Li W, Yue L, Xiao S. Subjective cognitive decline is associated with a higher risk of objective cognitive decline: a cross-sectional and longitudinal study[J]. Front Psychiatry, 2022, 13: 950270. doi: 10.3389/fpsyt.2022.950270
    [12]
    Chang HI, Chang YT, Huang CW, et al. Structural covariance network as an endophenotype in Alzheimer's disease-susceptible single-nucleotide polymorphisms and the correlations with cognitive outcomes[J]. Front Aging Neurosci, 2021, 13: 721217. doi: 10.3389/fnagi.2021.721217
    [13]
    Ayyash S, Davis AD, Alders GL, et al. Exploring brain connectivity changes in major depressive disorder using functional-structural data fusion: a CAN-BIND-1 study[J]. Hum Brain Mapp, 2021, 42(15): 4940-57. doi: 10.1002/hbm.25590
    [14]
    Fu ZR, Zhao MY, He YR, et al. Divergent connectivity changes in gray matter structural covariance networks in subjective cognitive decline, amnestic mild cognitive impairment, and Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 686598. doi: 10.3389/fnagi.2021.686598
    [15]
    Xu K, Wei YC, Zhang SM, et al. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: a multimodal imaging study[J]. Front Neurosci, 2022, 16: 888174. doi: 10.3389/fnins.2022.888174
    [16]
    Chen Y, Wang YF, Song ZY, et al. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: a systematic review[J]. Ageing Res Rev, 2023, 87: 101911. doi: 10.1016/j.arr.2023.101911
    [17]
    Shao W, Li X, Zhang J, et al. White matter integrity disruption in the pre-dementia stages of Alzheimer's disease: from subjective memory impairment to amnestic mild cognitive impairment[J]. Eur J Neurol, 2019, 26(5): 800-7. doi: 10.1111/ene.13892
    [18]
    Ohlhauser L, Parker AF, Smart CM, et al. White matter and its relationship with cognition in subjective cognitive decline[J]. . Alzheimers Dement, 2018, 11: 28-35.
    [19]
    Chao YP, Liu PT B, Wang PN, et al. Reduced inter-voxel white matter integrity in subjective cognitive decline: diffusion tensor imaging with tract-based spatial statistics analysis[J]. Front Aging Neurosci, 2022, 14: 810998. doi: 10.3389/fnagi.2022.810998
    [20]
    Gong GL. Local diffusion homogeneity (LDH): an inter-voxel diffusion MRI metric for assessing inter-subject white matter variability[J]. PLoS One, 2013, 8(6): e66366. doi: 10.1371/journal.pone.0066366
    [21]
    Fogel H, Levy-Lamdan O, Zifman N, et al. Brain network integrity changes in subjective cognitive decline: a possible physiological biomarker of dementia[J]. Front Neurol, 2021, 12: 699014. doi: 10.3389/fneur.2021.699014
    [22]
    Lee YM, Ha JK, Park JM, et al. Impact of apolipoprotein E4 polymorphism on the gray matter volume and the white matter integrity in subjective memory impairment without white matter hyperintensities: voxel-based morphometry and tract-based spatial statistics study under 3-tesla MRI[J]. J Neuroimaging, 2016, 26(1): 144-9. doi: 10.1111/jon.12207
    [23]
    Shu N, Wang XN, Bi QH, et al. Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline[J]. Radiology, 2018, 286(1): 229-38. doi: 10.1148/radiol.2017162696
    [24]
    Hojjati SH, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI[J]. Comput Biol Med, 2018, 102: 30-9. doi: 10.1016/j.compbiomed.2018.09.004
    [25]
    Xue C, Yuan BY, Yue YY, et al. Distinct disruptive patterns of default mode subnetwork connectivity across the spectrum of preclinical Alzheimer's disease[J]. Front Aging Neurosci, 2019, 11: 307. doi: 10.3389/fnagi.2019.00307
    [26]
    Teeuw J, Hulshoff Pol HE, Boomsma DI, et al. Reliability modelling of resting-state functional connectivity[J]. NeuroImage, 2021, 231: 117842. doi: 10.1016/j.neuroimage.2021.117842
    [27]
    Li ZY, Lin HA, Zhang Q, et al. Individual proportion loss of functional connectivity strength: a novel individual functional connectivity biomarker for subjective cognitive decline populations[J]. Biology, 2023, 12(4): 564. doi: 10.3390/biology12040564
    [28]
    Jia XZ, Sun JW, Ji GJ, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level[J]. PLoS One, 2020, 15(1): e0227021. doi: 10.1371/journal.pone.0227021
    [29]
    Li CX, Li YJ, Zheng LA, et al. Abnormal brain network connectivity in a triple-network model of Alzheimer's disease[J]. J Alzheimers Dis, 2019, 69(1): 237-52. doi: 10.3233/JAD-181097
    [30]
    Ritchie K, Carrière I, Howett D, et al. Allocentric and egocentric spatial processing in middle-aged adults at high risk of late-onset Alzheimer's disease: the PREVENT dementia study[J]. J Alzheimers Dis, 2018, 65(3): 885-96. doi: 10.3233/JAD-180432
    [31]
    Liang LY, Zhao LH, Wei YC, et al. Structural and functional hippocampal changes in subjective cognitive decline from the community[J]. Front Aging Neurosci, 2020, 12: 64. doi: 10.3389/fnagi.2020.00064
    [32]
    Scherr M, Utz L, Tahmasian M, et al. Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease a simultaneous resting-state FDG-PET/fMRI study[J]. Hum Brain Mapp, 2021, 42(13): 4134-43. doi: 10.1002/hbm.24517
    [33]
    Parker AF, Smart CM, Scarapicchia V, et al. Identification of earlier biomarkers for Alzheimer's disease: a multimodal neuroimaging study of individuals with subjective cognitive decline[J]. J Alzheimers Dis, 2020, 77(3): 1067-76. doi: 10.3233/JAD-200299
    [34]
    Cai CT, Huang CX, Yang CH, et al. Altered patterns of functional connectivity and causal connectivity in salience subnetwork of subjective cognitive decline and amnestic mild cognitive impairment[J]. Front Neurosci, 2020, 14: 288. doi: 10.3389/fnins.2020.00288
    [35]
    Xue C, Sun HT, Yue YY, et al. Structural and functional disruption of salience network in distinguishing subjective cognitive decline and amnestic mild cognitive impairment[J]. ACS Chem Neurosci, 2021, 12(8): 1384-94. doi: 10.1021/acschemneuro.1c00051
    [36]
    Liang X, Zou QH, He Y, et al. Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads[J]. Cereb Cortex, 2016, 26(4): 1501-11. doi: 10.1093/cercor/bhu316
    [37]
    Xue C, Qi WZ, Yuan QQ, et al. Disrupted dynamic functional connectivity in distinguishing subjective cognitive decline and amnestic mild cognitive impairment based on the triple-network model[J]. Front Aging Neurosci, 2021, 13: 711009. doi: 10.3389/fnagi.2021.711009
    [38]
    Lei BY, Cheng NN, Frangi AF, et al. Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis[J]. Med Image Anal, 2021, 74: 102248. doi: 10.1016/j.media.2021.102248
    [39]
    Li AJ, Yue L, Xiao SF, et al. Cognitive function assessment and prediction for subjective cognitive decline and mild cognitive impairment[J]. Brain Imag Behav, 2022, 16(2): 645-58. doi: 10.1007/s11682-021-00545-1
    [40]
    Yu MH, Guan H, Fang YQ, et al. Domain-prior-induced structural MRI adaptation for clinical progression prediction of subjective cognitive decline[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 24-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return