留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

低强度聚焦超声在神经调控中的作用机制及其应用前景

曹佳智 黄林 凌文武

曹佳智, 黄林, 凌文武. 低强度聚焦超声在神经调控中的作用机制及其应用前景[J]. 分子影像学杂志, 2024, 47(10): 1151-1154. doi: 10.12122/j.issn.1674-4500.2024.10.20
引用本文: 曹佳智, 黄林, 凌文武. 低强度聚焦超声在神经调控中的作用机制及其应用前景[J]. 分子影像学杂志, 2024, 47(10): 1151-1154. doi: 10.12122/j.issn.1674-4500.2024.10.20
CAO Jiazhi, HUANG Lin, LING Wenwu. The mechanism and application prospect of low-intensity focused ultrasound in neuromodulation[J]. Journal of Molecular Imaging, 2024, 47(10): 1151-1154. doi: 10.12122/j.issn.1674-4500.2024.10.20
Citation: CAO Jiazhi, HUANG Lin, LING Wenwu. The mechanism and application prospect of low-intensity focused ultrasound in neuromodulation[J]. Journal of Molecular Imaging, 2024, 47(10): 1151-1154. doi: 10.12122/j.issn.1674-4500.2024.10.20

低强度聚焦超声在神经调控中的作用机制及其应用前景

doi: 10.12122/j.issn.1674-4500.2024.10.20
基金项目: 

国防科技创新特区163计划 18-163-21-TS-001-050-01

详细信息
    作者简介:

    曹佳智,硕士,技师,E-mail: caojiazhicjz@163.com

    通讯作者:

    凌文武,博士,副教授,E-mail: lingwenwubing@163.com

The mechanism and application prospect of low-intensity focused ultrasound in neuromodulation

  • 摘要: 随着脑科学计划的推进,大脑相关研究已成为科研热点,与其相关的神经调控是目前研究的前沿方向。相比传统的神经调控手段,低强度聚焦超声(LIFU)作为一种新兴的神经调控技术,具有无创、可逆、可靶向大脑深层结构等优点,已被国内外学者广泛研究,但关于LIFU神经调控的具体机制还不十分清晰,而机制的阐明对其在相关领域的应用具有指导意义。本文就近年来LIFU神经调控的作用机制的研究进展进行简要综述,并且简要梳理了超声在神经系统的应用,以期为超声神经调控的后续基础和临床研究提供参考。

     

  • [1] Okun MS. Deep-brain stimulation for Parkinson's disease[J]. N Engl J Med, 2012, 367(16): 1529-38. doi: 10.1056/NEJMct1208070
    [2] Chase HW, Boudewyn MA, Carter CS, et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation[J]. Mol Psychiatry, 2020, 25(2): 397-407. doi: 10.1038/s41380-019-0499-9
    [3] Rost BR, Schneider-Warme F, Schmitz D, et al. Optogenetic tools for subcellular applications in neuroscience[J]. Neuron, 2017, 96 (3): 572-603. doi: 10.1016/j.neuron.2017.09.047
    [4] Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues[J]. Am J Physiol Leg Content, 1929, 91(1): 284-90. doi: 10.1152/ajplegacy.1929.91.1.284
    [5] Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound[J]. Science, 1958, 127 (3289): 83-4. doi: 10.1126/science.127.3289.83
    [6] Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound[J]. PLoS One, 2008, 3(10): e3511. doi: 10.1371/journal.pone.0003511
    [7] Yoo SS, Bystritsky A, Lee JH, et al. Focused ultrasound modulates region-specific brain activity[J]. Neuroimage, 2011, 56(3): 1267-75. doi: 10.1016/j.neuroimage.2011.02.058
    [8] Deffieux T, Younan Y, Wattiez N, et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23(23): 2430-3. doi: 10.1016/j.cub.2013.10.029
    [9] Colucci V, Strichartz G, Jolesz F, et al. Focused ultrasound effects on nerve action potential in vitro[J]. Ultrasound Med Biol, 2009, 35(10): 1737-47. doi: 10.1016/j.ultrasmedbio.2009.05.002
    [10] Lee W, Lee SD, Park MY, et al. Image-guided focused ultrasoundmediated regional brain stimulation in sheep[J]. Ultrasound Med Biol, 2016, 42(2): 459-70. doi: 10.1016/j.ultrasmedbio.2015.10.001
    [11] Panczykowski DM, Monaco EA 3rd, Friedlander RM. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74(6): N8.
    [12] Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans [J]. Nat Neurosci, 2014, 17(2): 322-9. doi: 10.1038/nn.3620
    [13] Huang SL, Chang CW, Lee YH, et al. Protective effect of lowintensity pulsed ultrasound on memory impairment and brain damage in a rat model of vascular dementia[J]. Radiology, 2017, 282(1): 113-22. doi: 10.1148/radiol.2016160095
    [14] Nightingale KR, Palmeri ML, Nightingale RW, et al. On the feasibility of remote palpation using acoustic radiation force[J]. J Acoust Soc Am, 2001, 110(1): 625-34. doi: 10.1121/1.1378344
    [15] Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity[J]. Curr Opin Neurobiol, 2018, 50: 222-31. doi: 10.1016/j.conb.2018.04.011
    [16] Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts[J]. Int J Dermatol, 2007, 46(6): 587-93. doi: 10.1111/j.1365-4632.2007.02914.x
    [17] Kubanek J, Shi JY, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Sci Rep, 2016, 6: 24170. doi: 10.1038/srep24170
    [18] Ye J, Tang SY, Meng L, et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Lett, 2018, 18(7): 4148-55. doi: 10.1021/acs.nanolett.8b00935
    [19] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. J Neurosci, 2018, 38(12): 3081-91. doi: 10.1523/JNEUROSCI.1458-17.2018
    [20] Radhakrishnan K, Bader KB, Haworth KJ, et al. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents[J]. Phys Med Biol, 2013, 58(18): 6541-63. doi: 10.1088/0031-9155/58/18/6541
    [21] Zhang LL, Lin ZH, Zeng L, et al. Ultrasound-induced biophysical effects in controlled drug delivery[J]. Sci China Life Sci, 2022, 65 (5): 896-908. doi: 10.1007/s11427-021-1971-x
    [22] Fomenko A, Neudorfer C, Dallapiazza RF, et al. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications[J]. Brain Stimul, 2018, 11(6): 1209-17. doi: 10.1016/j.brs.2018.08.013
    [23] Lentacker I, de Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms[J]. Adv Drug Deliv Rev, 2014, 72: 49-64. doi: 10.1016/j.addr.2013.11.008
    [24] Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects[J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3258-63. doi: 10.1073/pnas.1015771108
    [25] Pasquinelli C, Hanson LG, Siebner HR, et al. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies[J]. Brain Stimul, 2019, 12(6): 1367-80. doi: 10.1016/j.brs.2019.07.024
    [26] Buzatu S. The temperature-induced changes in membrane potential [J]. Riv Biol, 2009, 102(2): 199-217.
    [27] Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses)[J]. J Acoust Soc Am, 1981, 69(5): 1514-6. doi: 10.1121/1.385791
    [28] Gong ZR, Dai ZF. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers[J]. Adv Sci, 2021, 8(10): 2002178. doi: 10.1002/advs.202002178
    [29] Sato T, Shapiro MG, Tsao DY. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism[J]. Neuron, 2018, 98(5): 1031-41. e5. doi: 10.1016/j.neuron.2018.05.009
    [30] Guo HS, Hamilton Ii M, Offutt SJ, et al. Ultrasound produces extensive brain activation via a cochlear pathway[J]. Neuron, 2018, 99(4): 866. doi: 10.1016/j.neuron.2018.07.049
    [31] Airan RD, Butts Pauly K. Hearing out ultrasound neuromodulation [J]. Neuron, 2018, 98(5): 875-7. doi: 10.1016/j.neuron.2018.05.031
    [32] 周晓青, 刘睿旭, 谭如欣, 等. 听觉神经通路在磁声耦合刺激调控运动皮层中的作用[J]. 中国生物医学工程学报, 2021, 40(2): 188-94. doi: 10.3969/j.issn.0258-8021.2021.02.08
    [33] Mohammadjavadi M, Ye PP, Xia AP, et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation[J]. Brain Stimul, 2019, 12(4): 901-10. doi: 10.1016/j.brs.2019.03.005
    [34] Mueller J, Legon W, Opitz A, et al. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics[J]. Brain Stimul, 2014, 7(6): 900-8. doi: 10.1016/j.brs.2014.08.008
    [35] Yu K, Sohrabpour A, He B. Electrophysiological source imaging of brain networks perturbed by low-intensity transcranial focused ultrasound[J]. IEEE Trans Biomed Eng, 2016, 63(9): 1787-94. doi: 10.1109/TBME.2016.2591924
    [36] Hameroff S, Penrose R. Consciousness in the universe: a review of the 'Orch OR' theory[J]. Phys Life Rev, 2014, 11(1): 39-78. doi: 10.1016/j.plrev.2013.08.002
    [37] Zou JJ, Yi SS, Niu LL, et al. Neuroprotective effect of ultrasound neuromodulation on kainic acid-induced epilepsy in mice[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(9): 3006-16. doi: 10.1109/TUFFC.2021.3079628
    [38] Götz J, Richter-Stretton G, Cruz E. Therapeutic ultrasound as a treatment modality for physiological and pathological ageing including Alzheimer's disease[J]. Pharmaceutics, 2021, 13(7): 1002. doi: 10.3390/pharmaceutics13071002
    [39] Liu LX, Du J, Zheng T, et al. Protective effect of low-intensity transcranial ultrasound stimulation after differing delay following an acute ischemic stroke[J]. Brain Res Bull, 2019, 146: 22-7. doi: 10.1016/j.brainresbull.2018.12.004
    [40] Zheng T, Du J, Yuan Y, et al. Effect of low intensity transcranial ultrasound (LITUS) on post-traumatic brain edema in rats: evaluation by isotropic 3-dimensional T2 and multi-TE T2 weighted MRI[J]. Front Neurol, 2020, 11: 578638. doi: 10.3389/fneur.2020.578638
    [41] 胡珊珊, 刘晓, 罗汉才, 等. 低强度脉冲超声调控治疗疼痛性膝骨关节炎的临床研究[J]. 实用医学杂志, 2023, 39(21): 2783-8. doi: 10.3969/j.issn.1006-5725.2023.21.015
    [42] 梁燕, 张保朝, 傅国惠. 超声刺激在红藻氨酸诱导的癫痫小鼠中呈现抗癫痫和海马神经保护作用[J]. 中国组织化学与细胞化学杂志, 2021, 30(1): 13-8.
    [43] Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits [J]. Radiology, 2001, 220(3): 640-6. doi: 10.1148/radiol.2202001804
    [44] Rezai AR, Ranjan M, D'Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci U S A, 2020, 117(17): 9180-2. doi: 10.1073/pnas.2002571117
    [45] Wu HY, Zhou Y, Xu LX, et al. Mapping knowledge structure and research frontiers of ultrasound-induced blood-brain barrier opening: a scientometric study[J]. Front Neurosci, 2021, 15: 706105. doi: 10.3389/fnins.2021.706105
    [46] Felix MS, Borloz E, Metwally K, et al. Ultrasound-mediated bloodbrain barrier opening improves whole brain gene delivery in mice [J]. Pharmaceutics, 2021, 13(8): 1245. doi: 10.3390/pharmaceutics13081245
    [47] Chen TT, Lan TH, Yang FY. Low-intensity pulsed ultrasound attenuates LPS-induced neuroinflammation and memory impairment by modulation of TLR4/NF-κB signaling and CREB/BDNF expression[J]. Cereb Cortex, 2019, 29(4): 1430-8. doi: 10.1093/cercor/bhy039
    [48] Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model[J]. Sci Transl Med, 2015, 7(278): 278ra33.
    [49] Monteith SJ, Kassell NF, Goren O, et al. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage[J]. Neurosurg Focus, 2013, 34(5): E14. doi: 10.3171/2013.2.FOCUS1313
    [50] Zheng T, Yuan Y, Yang HX, et al. Evaluating the therapeutic effect of low-intensity transcranial ultrasound on traumatic brain injury with diffusion kurtosis imaging[J]. J Magn Reson Imaging, 2020, 52(2): 520-31. doi: 10.1002/jmri.27063
    [51] 廖海芬, 孟文, 牛丽丽, 等. 以低强度聚焦超声刺激大鼠迷走神经的安全性[J]. 中国介入影像与治疗学, 2024, 21(6): 358-62.
    [52] Song H, Chen RY, Ren LY, et al. Low intensity transcranial ultrasound stimulation induces hemodynamic responses through neurovascular coupling[J]. iScience, 2024, 27(7): 110269. doi: 10.1016/j.isci.2024.110269
    [53] Zhao D, Feng PJ, Liu JH, et al. Electromagnetized-nanoparticlemodulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain[J]. Adv Mater, 2020, 32 (43): e2003800. doi: 10.1002/adma.202003800
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  33
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回