留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

新型分子探针PET/CT显像在分化型甲状腺癌中的研究进展

于丽硕 詹华英 李伟龙

于丽硕, 詹华英, 李伟龙. 新型分子探针PET/CT显像在分化型甲状腺癌中的研究进展[J]. 分子影像学杂志, 2024, 47(10): 1144-1150. doi: 10.12122/j.issn.1674-4500.2024.10.19
引用本文: 于丽硕, 詹华英, 李伟龙. 新型分子探针PET/CT显像在分化型甲状腺癌中的研究进展[J]. 分子影像学杂志, 2024, 47(10): 1144-1150. doi: 10.12122/j.issn.1674-4500.2024.10.19
YU Lishuo, ZHAN Huaying, LI Weilong. Research progress of novel molecular probe PET/CT imaging in differentiated thyroid cancer[J]. Journal of Molecular Imaging, 2024, 47(10): 1144-1150. doi: 10.12122/j.issn.1674-4500.2024.10.19
Citation: YU Lishuo, ZHAN Huaying, LI Weilong. Research progress of novel molecular probe PET/CT imaging in differentiated thyroid cancer[J]. Journal of Molecular Imaging, 2024, 47(10): 1144-1150. doi: 10.12122/j.issn.1674-4500.2024.10.19

新型分子探针PET/CT显像在分化型甲状腺癌中的研究进展

doi: 10.12122/j.issn.1674-4500.2024.10.19
基金项目: 

烟台市科技计划项目 2018SFGY113

详细信息
    作者简介:

    于丽硕,在读硕士研究生,E-mail: ylsyhhnl@163.com

    通讯作者:

    李伟龙,副主任医师,E-mail: 389952020@qq.com

Research progress of novel molecular probe PET/CT imaging in differentiated thyroid cancer

  • 摘要: 近年来,分化型甲状腺癌(DTC)的发病率呈显著增高趋势,PET/CT在DTC患者诊疗中的应用也备受瞩目,其将解剖学与功能学成像相结合,实现了分子水平可视化。氟18-脱氧葡萄糖(18F-FDG)已被证实为细胞代谢的标志物,是目前使用最广泛的PET放射性药物。除18F-FDG外,多种新型分子探针也有望从基础研究走向临床,用于DTC显像并指导治疗。本文主要阐述了新型PET分子探针的作用机制及研究进展,以期为新型分子探针在DTC诊疗领域的发展与应用提供参考。

     

  • [1] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. Ca-Cancer J Clin, 2022, 72 (1): 7-33. doi: 10.3322/caac.21708
    [2] 中国抗癌协会甲状腺癌专业委员会. 中国抗癌协会甲状腺癌整合诊治指南(2022精简版)[J]. 中国肿瘤临床, 2023, 50(7): 325-30.
    [3] 中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)分化型甲状腺癌诊疗指南2021[J]. 肿瘤预防与治疗, 2021, 34(12): 1164-200. doi: 10.3969/j.issn.1674-0904.2021.12.013
    [4] 叶智轶, 马超, 傅宏亮, 等. 18F-FDG PET/CT显像在131I全身显像阴性的分化型甲状腺癌中的应用价值[J]. 上海交通大学学报: 医学版, 2016, 36(1): 76-9. doi: 10.3969/j.issn.1674-8115.2016.01.015
    [5] Khoshnevisan A, Jauregui-Osoro M, Shaw K, et al. 18F-tetrafluoroborate as a PET tracer for the sodium/iodide symporter: the importance of specific activity[J]. EJNMMI Res, 2016, 6(1): 34. doi: 10.1186/s13550-016-0188-5
    [6] Jiang HL, Schmit NR, Koenen AR, et al. Safety, pharmacokinetics, metabolism and radiation dosimetry of 18F-tetrafluoroborate (18FTFB) in healthy human subjects[J]. EJNMMI Res, 2017, 7(1): 90. doi: 10.1186/s13550-017-0337-5
    [7] 牛梦达. 18F-tetrafluoroborate作为PET显像剂在表达NIS的肿瘤模型中成像潜能的研究[D]. 重庆: 重庆医科大学, 2022.
    [8] O'Doherty J, Jauregui-Osoro M, Brothwood T, et al. 18F-tetrafluoroborate, a PET probe for imaging sodium/iodide symporter expression: whole-body biodistribution, safety, and radiation dosimetry in thyroid cancer patients[J]. J Nucl Med, 2017, 58(10): 1666-71. doi: 10.2967/jnumed.117.192252
    [9] Ventura D, Dittmann M, Büther F, et al. Diagnostic performance of 18F-TFB PET/CT compared with therapeutic activity 131I-Iodine SPECT/CT and 18F-FDG PET/CT in recurrent differentiated thyroid carcinoma[J]. J Nucl Med, 2024, 65(2): 192-8. doi: 10.2967/jnumed.123.266513
    [10] Samnick S, Al-Momani E, Schmid JS, et al. Initial clinical investigation of 18F-tetrafluoroborate PET/CT in comparison to 124I-Iodine PET/CT for imaging thyroid cancer[J]. Clin Nucl Med, 2018, 43(3): 162-7. doi: 10.1097/RLU.0000000000001977
    [11] 王观筠, 于鹏, 宁静, 等. PSMA配体PET显像在非前列腺肿瘤诊疗中的应用[J]. 中华核医学与分子影像杂志, 2020, 40(4): 243-6. doi: 10.3760/cma.j.cn321828-20190722-00137
    [12] Bychkov A, Vutrapongwatana U, Tepmongkol S, et al. PSMA expression by microvasculature of thyroid tumors- Potential implications for PSMA theranostics[J]. Sci Rep, 2017, 7(1): 5202. doi: 10.1038/s41598-017-05481-z
    [13] Ciappuccini R, Saguet-Rysanek V, Giffard F, et al. PSMA expression in differentiated thyroid cancer: association with radioiodine, 18FDG uptake, and patient outcome[J]. J Clin Endocrinol Metab, 2021, 106(12): 3536-45.
    [14] Santhanam P, Russell J, Rooper LM, et al. The prostate- specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL detects tumor neovasculature in metastatic, advanced, radioiodinerefractory, differentiated thyroid cancer[J]. Med Oncol, 2020, 37 (11): 98. doi: 10.1007/s12032-020-01427-0
    [15] Pitalua-Cortes Q, García-Perez FO, Vargas-Ahumada J, et al. Headto-head comparison of 68Ga-PSMA-11 and 131I in the follow-up of well-differentiated metastatic thyroid cancer: a new potential theragnostic agent[J]. Front Endocrinol, 2021, 12: 794759. doi: 10.3389/fendo.2021.794759
    [16] Haugen BR. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: what is new and what has changed? [J]. Cancer, 2017, 123(3): 372-81. doi: 10.1002/cncr.30360
    [17] Verma P, Malhotra G, Meshram V, et al. Prostate-specific membrane antigen expression in patients with differentiated thyroid cancer with thyroglobulin elevation and negative iodine scintigraphy using 68Ga-PSMA-HBED-CC PET/CT[J]. Clin Nucl Med, 2021, 46(8): e406-e409. doi: 10.1097/RLU.0000000000003655
    [18] de Vries LH, Lodewijk L, Braat AJAT, et al. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617[J]. EJNMMI Res, 2020, 10 (1): 18. doi: 10.1186/s13550-020-0610-x
    [19] Giesel FL, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTAcontaining FAP-targeting agents in patients with various cancers [J]. J Nucl Med, 2019, 60(3): 386-92. doi: 10.2967/jnumed.118.215913
    [20] Fu H, Wu J, Huang JX, et al. 68Ga fibroblast activation protein inhibitor PET/CT in the detection of metastatic thyroid cancer: comparison with 18F-FDG PET/CT[J]. Radiology, 2022, 304(2): 397-405. doi: 10.1148/radiol.212430
    [21] Fu H, Fu J, Huang JX, et al. 68GA-FAPI PET/CT versus 18F-FDG PET/CT for detecting metastatic lesions in a case of radioiodinerefractory differentiated thyroid cancer[J]. Clin Nucl Med, 2021, 46 (11): 940-2. doi: 10.1097/RLU.0000000000003730
    [22] Sun WY, Jung WH, Koo JS. Expression of cancer-associated fibroblast-related proteins in thyroid papillary carcinoma[J]. Tumor Biol, 2016, 37(6): 8197-207. doi: 10.1007/s13277-015-4684-4
    [23] Mu XY, Huang XX, Jiang ZW, et al. 18FAPI-42 PET/CT in differentiated thyroid cancer: diagnostic performance, uptake values, and comparison with 2-18FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2023, 50(4): 1205-15. doi: 10.1007/s00259-022-06067-2
    [24] Luo YP, Pan QQ, Zhang W, et al. Intense FAPI uptake in inflammation may mask the tumor activity of pancreatic cancer in 68Ga-FAPI PET/CT[J]. Clin Nucl Med, 2020, 45(4): 310-1. doi: 10.1097/RLU.0000000000002914
    [25] Qin CX, Song Y, Liu X, et al. Increased uptake of 68Ga-DOTAFAPI-04 in bones and joints: metastases and beyond[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 709-20. doi: 10.1007/s00259-021-05472-3
    [26] 兰晓莉. FAPI: 构建核医学肿瘤诊疗一体化的新篇章[J]. 中华核医学与分子影像杂志, 2023, 43(6): 321-4. doi: 10.3760/cma.j.cn321828-20230503-00118
    [27] Ballal S, Yadav MP, Moon ES, et al. Novel fibroblast activation protein inhibitor-based targeted theranostics for radioiodinerefractory differentiated thyroid cancer patients: a pilot study[J]. Thyroid, 2022, 32(1): 65-77.
    [28] Akhavanallaf A, Peterson AB, Fitzpatrick K, et al. The predictive value of pretherapy 68Ga-DOTA-TATE PET and biomarkers in 177Lu- PRRT tumor dosimetry[J]. Eur J Nucl Med Mol Imaging, 2023, 50(10): 2984-96. doi: 10.1007/s00259-023-06252-x
    [29] Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature[J]. Future Oncol, 2014, 10(14): 2259-77. doi: 10.2217/fon.14.139
    [30] Pazaitou-Panayiotou K, Tiensuu Janson E, Koletsa T, et al. Somatostatin receptor expression in non-medullary thyroid carcinomas[J]. Hormones, 2012, 11(3): 290-6. doi: 10.14310/horm.2002.1357
    [31] Ocak M, Demirci E, Kabasakal L, et al. Evaluation and comparison of Ga-68DOTA-TATE and Ga-68DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer[J]. Nucl Med Commun, 2013, 34 (11): 1084-9. doi: 10.1097/MNM.0b013e328364eaab
    [32] Kundu P, Lata S, Sharma P, et al. Prospective evaluation of 68GADOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative 131I-whole body scan: comparison with 18F-FDG PET-CT[J]. Eur J Nucl Med Mol Imaging, 2014, 41 (7): 1354-62. doi: 10.1007/s00259-014-2723-9
    [33] Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2013, 40(5): 800-16. doi: 10.1007/s00259-012-2330-6
    [34] Budiawan H, Salavati A, Kulkarni HR, et al. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using 90Yttrium and 177Lutetium labeled somatostatin analogs: toxicity, response and survival analysis[J]. Am J Nucl Med Mol Imaging, 2013, 4(1): 39-52.
    [35] Hadad B, Askari E, Zakavi SR, et al. Case Report: Regaining radioiodine uptake following PRRT in radioiodine-refractory thyroid cancer: a new re-differentiation strategy?[J]. Front Nucl Med, 2023, 2: 1071022. doi: 10.3389/fnume.2022.1071022
    [36] 黄德龙, 吴俊豪, 何雨航, 等. 基于DOTATATE的α/β放射性核素治疗神经内分泌肿瘤的研究进展[J]. 中华核医学与分子影像杂志, 2023, 43(10): 627-30. doi: 10.3760/cma.j.cn321828-20220707-00216
    [37] Chen XY. Multimodality imaging of tumor integrin alphavbeta3 expression[J]. Mini Rev Med Chem, 2006, 6(2): 227-34. doi: 10.2174/138955706775475975
    [38] Klubo-Gwiezdzinska J, Kumari S, Shilpa T, et al. OR09-3 integrins as potential molecular targets in thyroid cancer imaging and therapy [J]. J Endocr Soc, 2022, 6(Supplement_1): A796.
    [39] Cheng WW, Wu ZY, Liang S, et al. Comparison of 18F-AIF-NOTAPRGD2 and 18F-FDG uptake in lymph node metastasis of differentiated thyroid cancer[J]. PLoS One, 2014, 9(6): e100521. doi: 10.1371/journal.pone.0100521
    [40] Hennrich U, Eder M. 68Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer[J]. Pharmaceuticals, 2021, 14(8): 713. doi: 10.3390/ph14080713
    [41] Parihar AS, Mittal BR, Kumar R, et al. 68Ga-DOTA-RGD2 positron emission tomography/computed tomography in radioiodine refractory thyroid cancer: prospective comparison of diagnostic accuracy with 18F-FDG positron emission tomography/computed tomography and evaluation toward potential theranostics[J]. Thyroid, 2020, 30(4): 557-67. doi: 10.1089/thy.2019.0450
    [42] Huang Y, Fan JY, Li Y, et al. Imaging of tumor hypoxia with radionuclide- labeled tracers for PET[J]. Front Oncol, 2021, 11: 731503. doi: 10.3389/fonc.2021.731503
    [43] Thorwarth D, Welz S, Mönnich D, et al. Prospective evaluation of a tumor control probability model based on dynamic 18F-FMISO PET for head and neck cancer radiotherapy[J]. J Nucl Med, 2019, 60(12): 1698-704. doi: 10.2967/jnumed.119.227744
    [44] 刘艳. 多种显像剂PET/CT显像在低/失分化甲状腺癌诊断效能的实验及临床研究[D]. 郑州: 郑州大学, 2015.
    [45] Reischl G, Dorow DS, Cullinane C, et al. Imaging of tumor hypoxia with 124I-IAZA in comparison with 18F-FMISO and 18FAZA: first small animal PET results[J]. J Pharm Pharm Sci, 2007, 10(2): 203-11.
    [46] Ferda J, Ferdová E, Vítovec M, et al. The imaging of the hypoxic microenvironment in tumorous tissue using PET/CT and PET/MRI [J]. Eur J Radiol, 2022, 154: 110458. doi: 10.1016/j.ejrad.2022.110458
    [47] Nakajo M, Jinguji M, Tani A, et al. 18FDG-PET/CT and 18FAZA-PET/CT hypoxia imaging of metastatic thyroid cancer: association with short-term progression after radioiodine therapy [J]. Mol Imaging Biol, 2020, 22(6): 1609-20. doi: 10.1007/s11307-020-01516-6
    [48] Yi HQ, Qin LL, Ye XM, et al. Progression of radio-labeled molecular imaging probes targeting chemokine receptors[J]. Crit Rev Oncol Hematol, 2024, 195: 104266. doi: 10.1016/j.critrevonc.2024.104266
    [49] Shin DY, Kim KJ, Ku CR, et al. Different CXCR4 expression according to various histologic subtype of papillary thyroid carcinoma[J]. Endocr Pathol, 2013, 24(4): 169-76. doi: 10.1007/s12022-013-9259-6
    [50] 孙芳芳, 杜雪梅. 靶向CXCR4 PET/CT分子探针在肿瘤诊疗中的应用进展[J]. 国际医学放射学杂志, 2021, 44(5): 584-8.
    [51] 张家铭, 邓雨晴, 王龙强. 趋化因子受体7和D2-40标记的微淋巴管密度在甲状腺癌组织的表达及其与淋巴结转移的关系[J]. 中华实验外科杂志, 2020, 37(12): 2295-8.
    [52] Dreher N, Hahner S, Fuß CT, et al. CXCR4-directed PET/CT with 68Ga-pentixafor in solid tumors-a comprehensive analysis of imaging findings and comparison with histopathology[J]. Eur J Nucl Med Mol Imaging, 2024, 51(5): 1383-94. doi: 10.1007/s00259-023-06547-z
    [53] Czajkowski M, Kaemmerer D, Sänger J, et al. Comparative evaluation of somatostatin and CXCR4 receptor expression in different types of thyroid carcinoma using well-characterised monoclonal antibodies[J]. BMC Cancer, 2022, 22(1): 740. doi: 10.1186/s12885-022-09839-z
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  19
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回