Research progress of the ultrasound scoring system of ovarian-adnexal mass
-
摘要: 超声是诊断卵巢-附件肿块最常用的影像学方式,但由于长期以来缺乏统一的超声图像描述标准、肿块图像各异及对操作者经验的依赖,导致术前对肿块良恶性的鉴别、亚分类及恶性风险评估有一定难度。因此,研究者先后开发了多种超声评分系统,对肿块的超声检查、报告书写等进行规范化描述,提出风险预测模型及恶性风险分类,给出临床管理建议,以期提升超声诊断的规范化、同质化,提高术前诊断肿块的准确率,为临床医师正确解读超声报告及进一步诊疗提供有益指导。本文就卵巢-附件肿块的恶性肿瘤风险指数模型、国际卵巢肿瘤研究分析组织开发的几种模型、妇科影像报告与数据系统及卵巢-附件超声报告和数据系统等的超声研究进展作一综述。Abstract: Ultrasound is the most commonly used imaging modality for the diagnosis of ovarian-adnexal masses. However, due to the long-standing lack of uniform standards for describing ultrasound images, the variability of mass images, and the reliance on operator experience, these factors lead to difficulties in preoperative identification, subclassification, and malignancy risk assessment of the masses. Therefore, researchers have successively developed a variety of ultrasound scoring systems to standardize the description of ultrasound examinations and the writing of mass reports, propose risk prediction models and malignant risk classifications, and provide clinical management suggestions, in order to enhance the standardization and homogenization of ultrasound diagnosis, improve the accuracy of preoperative diagnosis of masses, and offer useful guidance to clinicians in correctly interpreting ultrasound reports and further diagnosis and treatment. This article provides a review of ultrasound research advances in the risk of malignancy index, several models developed by the International Ovarian Tumor Analysis, the gynecologic imaging reporting and data system, and the ovarian-adnexal reporting and data system.
-
Key words:
- ovarian-adnexal mass /
- scoring system /
- ultrasound diagnosis
-
表 1 RMI评分细则
Table 1. RMI scoring rules
Evaluate metrics Description Scores of each indicator in the four calculation methods (points) RMI1 RMI2 RMI3 RMI4 M Premenopausal 1 1 1 1 Menopausal 3 4 3 4 There are no ultrasound features 0 1 1 1 U There is only one ultrasound feature 1 1 1 1 There are two or more ultrasound features 3 4 3 4 S (cm) <7 - - - 1 ≥7 - - - 2 CA125 (U/L) Directly for calculations Substitute a numerical value RMI: Risk of malignancy index; M: Menopausal status; U: Ultrasonic indicator; S: Tumor maximum diameter; CA125: Carbohydrate antigen 125. 表 2 Logistic回归模型分类及影响因素
Table 2. Logistic regression model classification and influencing factors
Classification of indicators Description Clinical indicators CA125 (U/mL); Patient's age (years); The hospital is a gynecologic oncology center (a tertiary referral center with a specialized gynaecological oncology department) (yes/no) Ultrasound indicators Maximum diameter of mass (mm); Maximum diameter of solid components (mm); The number of papillary protrusions (0, 1, 2, 3, or >3); behind the mass with acoustic shadows (yes/no); Number of cavities ≥10 (Yes/No); Whether there is ascites (yes/no) 表 3 IOTA三步法则诊断步骤及详细描述
Table 3. IOTA's three-step rule of diagnosis steps and detailed descriptions
Steps Ultrasound features Description Step 1: Instant and simple diagnosis Virtuous Premenopausal, unilocular tumors with ground-glass echo; Premenopausal, unilocular tumors with mixed echo and posterior acoustic shadows; Uniocular anechoic tumors with smooth walls and a maximum diameter of less than 10 cm; Regular-parietal unilocular. Malignant Postmenopausal, with ascites, tumors have a moderate or above blood flow signal; Postmenopausal and the lump has a blood flow signal; >50 years old with a serum CA125 value >100 U/mL. Step 2: The simple rule Virtuous Uniocular cysts; There are solid components, and the maximum diameter of solid components is<7 mm; There is an ultrasound shadow; Smooth multilocular cyst with a maximum diameter of<10 cm; No blood flow signal. Malignant Irregular solid mass; There is ascites; There are ≥4 papillary protrusions; Irregular multilocular cystic solid mass with a maximum diameter of ≥10 cm; There is an abundance of blood flow signals. Step 3: Gynecologic ultrasound expert evaluation - - 表 4 简单风险预测模型评估标准
Table 4. Simple rules risk model evaluation criteria
Grading Conclusion Malignant risk Description 1 Identify benign tumors 0% No adnexal tumors were found on ultrasound 2 There is a high probability of benignness <1% Functional tissues (follicles, corpus luteum, hemorrhagic cysts, etc.) 3 Benign possibility 1%-4% Such as endometriosis, teratoma, simple cyst, hydrosalpinx, paraovarian cyst, peritoneal pseudocyst, pedunculated fibroids or suggestive of pelvic inflammatory disease 4 Suspicious malignancy 5%-20% Presence of 1-2 signs of malignancy 5 Malignancy is highly likely >20% Presence of 3 or more signs of malignancy 表 5 附件多元模型的指标及其描述
Table 5. Indicators of the ADNEX model and their descriptions
Model classification Influencing factors LR1 Patient's age (years); Maximum diameter of mass (mm); The maximum diameter of the solid component (mm, the risk value does not increase if the maximum diameter > 50mm); Flow signal score (1, 2, 3, 4); Whether the pain is caused by a lump, whether there is ascites, whether there is blood flow in the solid area, whether it is a completely solid tumor, whether the inner wall of the cyst is regular, whether there is ultrasound sound, whether there is a family history of ovarian cancer, whether or not to take hormone therapy (yes=1, no=0) LR2 Patient's age; The maximum diameter of the solid component; Whether there is blood flow in the solid area, whether the inner wall of the cyst is regular, whether there is ultrasound sound, whether there is ascites (yes=1, no=0) 表 6 GI-RADS分类的评估标准
Table 6. Evaluation criteria for GI-RADS classification
Grading of diagnosis Malignant risk Description 1 Very low There are more than two benign featuresand no malignant features 2 Low There are two benign features or Uniocular cysts in benign features only, no malignant features 3 Medium There is a benign feature other than a unilocularis cyst and no malignant features 4 High There are no benign or malignant features; The number of benign features is greater than or equal to the number of malignant features 5 Very high The number of malignant features is greater than the number of benign features 表 7 2022版O-RADS风险分层管理系统细则
Table 7. Details of the 2022 version of the O-RADS risk stratification management system
ORADS classification Malignant risk Description of the term 0 - Incomplete assessment 1 Normal ovaries 1a. Ovaries without ovarian lesions
1b. Premenopausal ≤3 cm follicle and typical corpus luteum2 <1% 2a. Uniocular cysts: Premenopausal simple cysts >3 cm but<10 cm; Postmenopausal simple cyst<10 cm; non-simple cyst with a smooth inner wall of<10cm;
2b. Bilocular cyst: <10 cm with smooth inner wall/septation;
2c. Typical benign ovarian lesions (<10cm): unilocular hemorrhagic cyst; Ovarian endometriosis cyst ≤3 rooms; Dermatoid cyst ≤3 rooms;
2d. Typical extraovarian benign lesions of any size: Peritoneal inclusion cyst; Para ovarian cyst; Hydrosalpinx.3 1%-10% 3a. Uniocular cysts: Unilocular cysts ≥10 cm (including simple and non simple); Any single chamber cyst with irregular inner wall of any size;
3b. Bilateral cysts with a smooth inner wall of ≥10 cm;
3c. Typical benign ovarian lesions ≥10cm;
3d. multilocular cyst: with a smooth inner wall of<10cm and blood flow<4 points;
3e. Any size of solid or predominantly solid lesion (More than 80% solid): with regular external contours, without shadowing and Blood flow=1 point; with regular external contours, accompanying shadowing and blood flow1-3points.4 10%-50% 4a. Uniocular cysts of any size and with any blood flow signal: There are 1-3 papillary protrusions; Having solid components (non papillary);
4b. Bilateral cysts of any size: Bilateral cysts without solid components, Irregular inner walls and any blood flow signal; Bilateral cysts with solid components and blood flow 1-2 points;
4c. Multilocular cysts: A. Non solid ingredients: Smooth inner wall or partition, blood flow<4 points and ≥10 cm; Smooth inner wall or partition, blood flow=4 points and any size; Irregular inner walls or partitions, any blood flow signal and any size; B. Solid ingredients: Blood flow 1-2 points, any size;
4d. Any size of solid or predominantly solid lesion: Appearance rules, without shadowing and blood flow 2-3 points.5 ≥50% 5a. Uniocular cysts: ≥4 papillary protrusions, any blood flow signal and any size;
5b. Bilateral cysts: Solid ingredients, blood flow 3-4 points and any size;
5c. Multilocular cysts: Solid ingredients, blood flow=4 points and any size;
5d. Any size of solid or predominantly solid lesion: External contour rules and blood flow=4 points; Irregular external contour and any blood flow signal;
5e. Transfer signs: Ascites and peritoneal nodules. -
[1] 张国楠, 刘红. 附件包块的诊治策略[J]. 中国实用妇科与产科杂志, 2020, 36(12): 1129-31. [2] Lhotova K, Stolarova L, Zemankova P, et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer[J]. Cancers, 2020, 12(4): 956. doi: 10.3390/cancers12040956 [3] Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018[J]. CA a Cancer J Clin, 2018, 68(4): 284-96. doi: 10.3322/caac.21456 [4] Menon U, Gentry-Maharaj A, Burnell M, et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial[J]. Lancet, 2021, 397(10290): 2182-93. doi: 10.1016/S0140-6736(21)00731-5 [5] 卢雯平, 白萍, 田小飞, 等. 卵巢癌中西医结合诊疗指南[J]. 中国医药, 2024, 19(5): 641-8. [6] 曾艳, 祝凤翠, 宋化雨, 等. 妇科影像报告-数据系统、简单法则风险预测对卵巢癌的诊断价值[J]. 中国优生与遗传杂志, 2022, 30(6): 1024-7. [7] Jacobs I, Oram D, Fairbanks J, et al. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer[J]. Br J Obstet Gynaecol, 1990, 97(10): 922-9. doi: 10.1111/j.1471-0528.1990.tb02448.x [8] Tingulstad S, Hagen B, Skjeldestad FE, et al. Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses [J]. Br J Obstet Gynaecol, 1996, 103(8): 826-31. doi: 10.1111/j.1471-0528.1996.tb09882.x [9] Tingulstad S, Hagen B, Skjeldestad FE, et al. The risk-ofmalignancy index to evaluate potential ovarian cancers in local hospitals[J]. Obstet Gynecol, 1999, 93(3): 448-52. [10] Yamamoto Y, Yamada R, Oguri H, et al. Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses[J]. Eur J Obstet Gynecol Reprod Biol, 2009, 144(2): 163-7. doi: 10.1016/j.ejogrb.2009.02.048 [11] 李小利, 潘志, 刘传金, 等. 改良恶性风险指数联合哥本哈根指数鉴别诊断卵巢肿瘤良恶性的价值[J]. 临床超声医学杂志, 2022, 24(6): 469-72. doi: 10.3969/j.issn.1008-6978.2022.06.019 [12] 秦绪颖, 王瑞国, 王稳, 等. 卵巢肿瘤良恶性风险评估方法学中国专家共识(2024年版)[J]. 中国实用妇科与产科杂志, 2024, 40(3): 312-20. [13] 马士红, 李晓琴, 施燕芸. 四种恶性风险指数对卵巢肿瘤良恶性鉴别的诊断价值[J]. 中华医学超声杂志: 电子版, 2020, 17(11): 1108-13. doi: 10.3877/cma.j.issn.1672-6448.2020.11.010 [14] 和平, 吴青青, 孙丽娟, 等. 对比观察ADNEX模型、简单规则风险估计模型及恶性风险指数诊断卵巢良恶性肿瘤[J]. 中国医学影像技术, 2019, 35(1): 104-7. [15] Timmerman D, Planchamp F, Bourne T, et al. ESGO/ISUOG/IOTA/ ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors[J]. Int J Gynecol Cancer, 2021, 31(7): 961-82. doi: 10.1136/ijgc-2021-002565 [16] Timmerman D, Valentin L, Bourne TH, et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group[J]. Ultrasound Obstet Gynecol, 2000, 16 (5): 500-5. doi: 10.1046/j.1469-0705.2000.00287.x [17] Valentin L, Hagen B, Tingulstad S, et al. Comparison of 'pattern recognition'and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation[J]. Ultrasound Obstet Gynecol, 2001, 18(4): 357-65. doi: 10.1046/j.0960-7692.2001.00500.x [18] Zhang XY, Meng X, Dou T, et al. Diagnostic accuracy of transvaginal ultrasound examination for assigning a specific diagnosis to adnexal masses: a meta-analysis[J]. Exp Ther Med, 2020, 20(6): 265. [19] Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group[J]. J Clin Oncol, 2005, 23(34): 8794-801. doi: 10.1200/JCO.2005.01.7632 [20] Nunes N, Ambler G, Foo X, et al. Prospective evaluation of IOTA logistic regression models LR1 and LR2 in comparison with subjective pattern recognition for diagnosis of ovarian cancer in an outpatient setting[J]. Ultrasound Obstet Gynecol, 2018, 51(6): 829-35. doi: 10.1002/uog.18918 [21] 张会萍, 周毓青. 卵巢肿瘤超声评价方法的进展和临床应用[J]. 肿瘤影像学, 2024, 33(02) : 194-199. [22] 王硕, 王玲玲, 郑秀兰. IOTA超声诊断模型在卵巢肿瘤诊断方面的应用进展[J]. 现代肿瘤医学, 2022, 30(8): 1491-5. doi: 10.3969/j.issn.1672-4992.2022.08.031 [23] Ameye L, Timmerman D, Valentin L, et al. Clinically oriented three-step strategy for assessment of adnexal pathology[J]. Ultrasound Obstet Gynecol, 2012, 40(5): 582-91. doi: 10.1002/uog.11177 [24] Timmerman D, Testa AC, Bourne T, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer[J]. Ultrasound Obstet Gynecol, 2008, 31(6): 681-90. doi: 10.1002/uog.5365 [25] 田彩, 李海燕, 刘洁, 等. IOTA超声简易标准诊断附件肿瘤良恶性的价值[J]. 河北医药, 2023, 45(22): 3432-6. doi: 10.3969/j.issn.1002-7386.2023.22.015 [26] Hidalgo JJ, Ros F, Aubá M, et al. Prospective external validation of IOTA three-step strategy for characterizing and classifying adnexal masses and retrospective assessment of alternative two-step strategy using simple-rules risk[J]. Ultrasound Obstet Gynecol, 2019, 53(5): 693-700. doi: 10.1002/uog.20163 [27] Alcázar JL, Pascual MA, Graupera B, et al. External validation of IOTA simple descriptors and simple rules for classifying adnexal masses[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 397-402. doi: 10.1002/uog.15854 [28] Timmerman D, van Calster B, Testa A, et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis Group[J]. Am J Obstet Gynecol, 2016, 214(4): 424-37. doi: 10.1016/j.ajog.2016.01.007 [29] Solanki V, Singh P, Sharma C, et al. Predicting malignancy in adnexal masses by the international ovarian tumor analysis-simple rules[J]. J Midlife Health, 2020, 11(4): 217-23. [30] van Calster B, van Hoorde K, Valentin L, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study[J]. BMJ, 2014, 349: g5920. doi: 10.1136/bmj.g5920 [31] Sayasneh A, Ferrara L, de Cock B, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study[J]. Br J Cancer, 2016, 115(5): 542-8. doi: 10.1038/bjc.2016.227 [32] Chen H, Qian L, Jiang M, et al. Performance of IOTA ADNEX model in evaluating adnexal masses in a gynecological oncology center in China[J]. Ultrasound Obstet Gynecol, 2019, 54(6): 815-22. doi: 10.1002/uog.20363 [33] 倪仲馨, 陈慧. ADNEX模型鉴别转移性与原发性卵巢癌的诊断效能研究[J]. 诊断学理论与实践, 2023, 22(6): 573-8. [34] 刘真真, 石志敏, 徐钟慧, 等. IOTA ADNEX模型与简单法则对附件区疑难病变的诊断价值[J]. 中华医学超声杂志(电子版), 2020, 17 (11) : 1084-9. doi: 10.3877/cma.j.issn.1672-6448.2020.11.005 [35] Szubert S, Wojtowicz A, Moszynski R, et al. External validation of the IOTA ADNEX model performed by two independent gynecologic centers[J]. Gynecol Oncol, 2016, 142(3): 490-5. doi: 10.1016/j.ygyno.2016.06.020 [36] Amor F, Vaccaro H, Alcázar JL, et al. Gynecologic imaging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings[J]. J Ultrasound Med, 2009, 28(3): 285-91. doi: 10.7863/jum.2009.28.3.285 [37] Amor F, Alcázar JL, Vaccaro H, et al. GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study[J]. Ultrasound Obstet Gynecol, 2011, 38(4): 450-5. doi: 10.1002/uog.9012 [38] Basha MAA, Metwally MI, Gamil SA, et al. Comparison of ORADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses[J]. Eur Radiol, 2021, 31(2): 674-84. doi: 10.1007/s00330-020-07143-7 [39] Basha MAA, Refaat R, Ibrahim SA, et al. Gynecology Imaging Reporting and Data System (GI-RADS): diagnostic performance and inter-reviewer agreement[J]. Eur Radiol, 2019, 29(11): 5981-90. doi: 10.1007/s00330-019-06181-0 [40] Andreotti RF, Timmerman D, Strachowski LM, et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR ovarian-adnexal reporting and data system committee[J]. Radiology, 2020, 294(1): 168-85. doi: 10.1148/radiol.2019191150 [41] Strachowski LM, Jha P, Phillips CH, et al. O-RADS US v2022: an update from the American college of radiology's ovarian-adnexal reporting and data system US committee[J]. Radiology, 2023, 308 (3): e230685. doi: 10.1148/radiol.230685 [42] Jha P, Gupta A, Baran TM, et al. Diagnostic performance of the ovarian-adnexal reporting and data system (O-RADS) ultrasound risk score in women in the United States[J]. JAMA Netw Open, 2022, 5(6): e2216370. doi: 10.1001/jamanetworkopen.2022.16370 [43] 卢颖澜, 吴青青, 和平, 等. 卵巢-附件报告和数据系统(O-RADS)定性诊断卵巢肿瘤效能[J]. 中国医学影像技术, 2022, 38(9): 1367-70. [44] 谢映鲜, 王钰丹, 沈若霞, 等. 不同观察者基于卵巢-附件影像报告和数据系统诊断卵巢附件肿块的一致性研究[J]. 医学影像学杂志, 2024, 34(2): 91-4. [45] Zhou S, Guo YY, Wen LM, et al. Comparison of the diagnostic efficiency between the O-RADS US risk stratification system and doctors' subjective judgment[J]. BMC Med Imaging, 2023, 23(1): 190. doi: 10.1186/s12880-023-01153-9 [46] 杨琳, 张勇, 穆晓晶, 等. 卵巢-附件影像报告和数据系统联合超声造影鉴别卵巢良恶性肿瘤的临床价值[J]. 肿瘤影像学, 2023, 32(3): 291-7. [47] Xu HL, Gong TT, Liu FH, et al. Artificial intelligence performance in image-based ovarian cancer identification: a systematic review and meta-analysis[J]. EClinicalMedicine, 2022, 53: 101662. doi: 10.1016/j.eclinm.2022.101662 [48] Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction[J]. Radiology, 2018, 286(3): 800-9. doi: 10.1148/radiol.2017171920
计量
- 文章访问数: 41
- HTML全文浏览量: 16
- PDF下载量: 4
- 被引次数: 0