留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

MRI对Duchenne型肌营养不良患者大腿肌肉评估的研究进展

王奕乐 闫锐

王奕乐, 闫锐. MRI对Duchenne型肌营养不良患者大腿肌肉评估的研究进展[J]. 分子影像学杂志, 2024, 47(10): 1131-1135. doi: 10.12122/j.issn.1674-4500.2024.10.17
引用本文: 王奕乐, 闫锐. MRI对Duchenne型肌营养不良患者大腿肌肉评估的研究进展[J]. 分子影像学杂志, 2024, 47(10): 1131-1135. doi: 10.12122/j.issn.1674-4500.2024.10.17
WANG Yile, YAN Rui. Research progress of MRI assessment for thigh muscle in patients with Duchenne muscular dystrophy[J]. Journal of Molecular Imaging, 2024, 47(10): 1131-1135. doi: 10.12122/j.issn.1674-4500.2024.10.17
Citation: WANG Yile, YAN Rui. Research progress of MRI assessment for thigh muscle in patients with Duchenne muscular dystrophy[J]. Journal of Molecular Imaging, 2024, 47(10): 1131-1135. doi: 10.12122/j.issn.1674-4500.2024.10.17

MRI对Duchenne型肌营养不良患者大腿肌肉评估的研究进展

doi: 10.12122/j.issn.1674-4500.2024.10.17
基金项目: 

陕西省科技厅重点研发计划 2024SF-YBXM-239

详细信息
    作者简介:

    王奕乐,在读硕士研究生,E-mail: wyl298064@163.com

    通讯作者:

    闫锐,博士,主任医师,E-mail: ruiyan01@sina.com

Research progress of MRI assessment for thigh muscle in patients with Duchenne muscular dystrophy

  • 摘要: Duchenne型肌营养不良(DMD)是一种高致残性及高致死性的遗传性神经肌肉疾病,其起病隐匿且进展较快,目前还没有治愈的方法。由于MRI可以无创性检测骨骼肌中病理改变并且量化疾病程度等优点,近年来,在神经肌肉疾病中的应用越来越广泛。本文针对常规MRI、定量MRI、多参数MRI以及MRI结合人工智能对监测Duchenne型肌营养不良患者的疾病程度进行综述,提出目前最新的研究进展及现阶段的局限性,并为后期展开相关研究,为疾病的诊断和精准量化病变肌肉的状态与监测肌肉病变的进展程度提供参考。

     

  • [1] Grounds MD, Terrill JR, Al-Mshhdani BA, et al. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress[J]. Dis Model Mech, 2020, 13(2): dmm043638. doi: 10.1242/dmm.043638
    [2] Dowling P, Swandulla D, Ohlendieck K. Cellular pathogenesis of Duchenne muscular dystrophy: progressive myofibre degeneration, chronic inflammation, reactive myofibrosis and satellite cell dysfunction[J]. Eur J Transl Myol, 2023, 33(4): 11856.
    [3] 汪昌, 周洁, 石永光, 等. Duchenne型肌营养不良酶学与肌肉脂肪浸润度的研究[J]. 中国实用神经疾病杂志, 2021, 24(11): 954-60.
    [4] Alic L, Griffin JF 4th, Eresen A, et al. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: a systematic mapping review[J]. Muscle Nerve, 2021, 64(1): 8-22. doi: 10.1002/mus.27133
    [5] Salari N, Fatahi B, Valipour E, et al. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis[J]. J Orthop Surg Res, 2022, 17(1): 96. doi: 10.1186/s13018-022-02996-8
    [6] Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management[J]. Lancet Neurol, 2018, 17(3): 251-67. doi: 10.1016/S1474-4422(18)30024-3
    [7] Suslov V, Suslova G, Lytaev S. MRI assessment of motor capabilities in patients with Duchenne muscular dystrophy according to the motor function measure scale[J]. Tomography, 2022, 8(2): 948-60. doi: 10.3390/tomography8020076
    [8] Güttsches AK, Rehmann R, Schreiner A, et al. Quantitative muscleMRI correlates with histopathology in skeletal muscle biopsies[J]. J Neuromuscul Dis, 2021, 8(4): 669-78. doi: 10.3233/JND-210641
    [9] Barnard AM, Willcocks RJ, Triplett WT, et al. MR biomarkers predict clinical function in Duchenne muscular dystrophy[J]. Neurology, 2020, 94(9): e897-e909.
    [10] Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy [J]. Nat Rev Dis Primers, 2021, 7(1): 13. doi: 10.1038/s41572-021-00248-3
    [11] 中华医学会神经病学分会, 中华医学会神经病学分会神经肌肉病学组, 中华医学会神经病学分会肌电图与临床神经生理学组. 中国假肥大型肌营养不良症诊治指南[J]. 中华神经科杂志, 2016, 49(1): 17-20. doi: 10.3760/cma.j.issn.1006-7876.2016.01.004
    [12] 张成. 《中国假肥大型肌营养不良症诊治指南》解读[J]. 中国现代神经疾病杂志, 2018, 18(7): 475-9. doi: 10.3969/j.issn.1672-6731.2018.07.003
    [13] 中华医学会罕见病分会, 北京医学会罕见病分会. 抗肌萎缩蛋白病中国诊断指南[J]. 中华医学杂志, 2024, 104(11): 822-33. doi: 10.3760/cma.j.cn112137-20231217-01402
    [14] Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy[J]. Expert Opin Biol Ther, 2023, 23(1): 49-59. doi: 10.1080/14712598.2022.2150543
    [15] Chesshyre M, Ridout D, Hashimoto Y, et al. Investigating the role of dystrophin isoform deficiency in motor function in Duchenne muscular dystrophy[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (2): 1360-72. doi: 10.1002/jcsm.12914
    [16] 石采灵, 傅航, 郭应坤, 等. T2WI-Dixon序列在杜氏肌营养不良症患者肌肉脂肪浸润和水肿评价中的应用价值研究[J]. 磁共振成像, 2022, 13(7): 96-102.
    [17] Abdulhady H, Sakr HM, Elsayed NS, et al. Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI[J]. Acta Myol, 2022, 41(1): 1-14.
    [18] Cristiano L, Brogna C, Tasca G, et al. Muscle-MRI and functional levels for the evaluation of upper limbs in Duchenne muscular dystrophy: a critical review of the literature[J]. Medicina, 2022, 58 (3): 440. doi: 10.3390/medicina58030440
    [19] 白万晶, 李学胜, 李真林, 等. 磁共振冠状位T2 DIXON TSE序列评价DMD患儿双侧臀部和大腿肌肉脂肪替代数量和等级的应用研究[J]. 中国医疗设备, 2021, 36(10): 126-31. doi: 10.3969/j.issn.1674-1633.2021.10.029
    [20] Mercuri E, Pichiecchio A, Allsop J, et al. Muscle MRI in inherited neuromuscular disorders: past, present, and future[J]. J Magn Reson Imaging, 2007, 25(2): 433-40. doi: 10.1002/jmri.20804
    [21] Kim HK, Laor T, Horn PS, et al. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments[J]. Radiology, 2010, 255(3): 899-908. doi: 10.1148/radiol.10091547
    [22] 何荣兴, 赖志芬, 梁颖茵. 骨骼肌MRI成像在Duchenne肌营养不良症的应用价值[J]. 中国CT和MRI杂志, 2024, 22(2): 153-6.
    [23] 谢后林. 基于肌肉磁共振成像对Duchenne型肌营养不良患者肌肉损伤的研究[D]. 合肥: 安徽中医药大学, 2020.
    [24] 唐静, 张家鹏, 杨学军, 等. 磁共振成像在肌营养不良疾病诊断中的应用价值[J]. 中国当代儿科杂志, 2022, 24(11): 1231-7. doi: 10.7499/j.issn.1008-8830.2206052
    [25] Barnard AM, Hammers DW, Triplett WT, et al. Evaluating genetic modifiers of Duchenne muscular dystrophy disease progression using modeling and MRI[J]. Neurology, 2022, 99(21): e2406-16.
    [26] Peng F, Xu HY, Song Y, et al. Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments[J]. BMC Musculoskelet Disord, 2022, 23 (1): 681. doi: 10.1186/s12891-022-05640-y
    [27] Wokke BH, Van Den Bergen JC, Hooijmans MT, et al. T2 relaxation times are increased in Skeletal muscle of DMD but not BMD patients[J]. Muscle Nerve, 2016, 53(1): 38-43. doi: 10.1002/mus.24679
    [28] Yin L, Xie ZY, Xu HY, et al. T2 mapping and fat quantification of thigh muscles in children with Duchenne muscular dystrophy[J]. Curr Med Sci, 2019, 39(1): 138-45. doi: 10.1007/s11596-019-2012-8
    [29] 程晓悦, 肖江喜, 杜婧, 等. MR T2mapping成像在Duchenne肌营养不良症中的应用[J]. 国际医学放射学杂志, 2018, 41(2): 146-50.
    [30] Song Y, Xu HY, Xu K, et al. Clinical utilisation of multimodal quantitative magnetic resonance imaging in investigating muscular damage in Duchenne muscular dystrophy: a study on the association between gluteal muscle groups and motor function[J]. Pediatr Radiol, 2023, 53(8): 1648-58. doi: 10.1007/s00247-023-05632-7
    [31] Sherlock SP, Zhang Y, Binks M, et al. Quantitative muscle MRI biomarkers in Duchenne muscular dystrophy: cross-sectional correlations with age and functional tests[J]. Biomark Med, 2021, 15(10): 761-73. doi: 10.2217/bmm-2020-0801
    [32] Omoumi P. The Dixon method in musculoskeletal MRI: from fatsensitive to fat-specific imaging[J]. Skeletal Radiol, 2022, 51(7): 1365-9. doi: 10.1007/s00256-021-03950-1
    [33] Naarding KJ, Reyngoudt H, van Zwet EW, et al. MRI vastus lateralis fat fraction predicts loss of ambulation in Duchenne muscular dystrophy[J]. Neurology, 2020, 94(13): e1386-e1394.
    [34] Peng F, Tang DQ, Qing WP, et al. Utilization of multi-parametric quantitative magnetic resonance imaging in the early diagnosis of Duchenne muscular dystrophy[J]. J Magn Reson Imaging, 2023. doi: 10.1002/jmri.29182.
    [35] 陈太雅, 林洁琼, 胡颖熠, 等. M-Dixon quant和T2-mapping对杜氏肌营养不良症患儿进展前期及进展期运动功能的评估[J]. 国际医学放射学杂志, 2024, 47(3): 335-41.
    [36] 陈太雅, 胡颖熠, 黄杨, 等. 基于多回波M-Dixon quant技术和T2-mapping技术鉴别抗肌萎缩蛋白病分型的研究[J]. 放射学实践, 2024, 39(6): 788-94.
    [37] Leung DG. Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy[J]. Muscle Nerve, 2019, 60(4): 347-60. doi: 10.1002/mus.26497
    [38] Marty B, Carlier PG. Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence[J]. Sci Rep, 2019, 9(1): 6852. doi: 10.1038/s41598-019-43398-x
    [39] 彭飞. Duchenne型肌营养不良症的多参数定量MRI与临床相关研究[D]. 南昌: 南昌大学, 2023.
    [40] Kim S, Willcocks RJ, Daniels MJ, et al. Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials[J]. CPT Pharmacometrics Syst Pharmacol, 2023, 12(10): 1437-49. doi: 10.1002/psp4.13021
    [41] Reyngoudt H, Turk S, Carlier PG. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy[J]. NMR Biomed, 2018, 31(1): 10.1002/nbm.3839. doi: 10.1002/nbm.3839
    [42] Xu T, Xu K, Song Y, et al. High-speed T2-corrected multiecho magnetic resonance spectroscopy for quantitatively detecting skeletal muscle fatty infiltration and predicting the loss of ambulation in patients with Duchenne muscular dystrophy[J]. J Magn Reson Imaging, 2023, 58(4): 1270-8. doi: 10.1002/jmri.28641
    [43] Li ZY, Zeng HW, Han CX, et al. Effectiveness of high-speed T2-corrected multiecho MR spectroscopic method for quantifying thigh muscle fat content in boys with Duchenne muscular dystrophy[J]. AJR Am J Roentgenol, 2019, 212(6): 1354-60. doi: 10.2214/AJR.18.20354
    [44] Willcocks RJ, Barnard AM, Daniels MJ, et al. Clinical importance of changes in magnetic resonance biomarkers for Duchenne muscular dystrophy[J]. Ann Clin Transl Neurol, 2024, 11(1): 67-78. doi: 10.1002/acn3.51933
    [45] Ding J, Cao P, Chang HC, et al. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fatwater decomposition MRI[J]. Insights Imaging, 2020, 11(1): 128. doi: 10.1186/s13244-020-00946-8
    [46] Yang M, Zheng YM, Xie ZY, et al. A deep learning model for diagnosing dystrophinopathies on thigh muscle MRI images[J]. BMC Neurol, 2021, 21(1): 13. doi: 10.1186/s12883-020-02036-0
    [47] Agosti A, Shaqiri E, Paoletti M, et al. Deep learning for automatic segmentation of thigh and leg muscles[J]. MAGMA, 2022, 35(3): 467-83. doi: 10.1007/s10334-021-00967-4
    [48] Gadermayr M, Disch C, Müller M, et al. A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases[J]. Magn Reson Imaging, 2018, 48: 20-6. doi: 10.1016/j.mri.2017.12.014
    [49] 严俊, 王玲, 黄益龙, 等. 基于轴位T1WI图像大腿肌肉脂肪浸润量化方法的可行性研究[J]. 磁共振成像, 2021, 12(12): 49-54. doi: 10.12015/issn.1674-8034.2021.12.010
    [50] Hostin MA, Ogier AC, Michel CP, et al. The impact of fatty infiltration on MRI segmentation of lower limb muscles in neuromuscular diseases: a comparative study of deep learning approaches[J]. J Magn Reson Imaging, 2023, 58(6): 1826-35. doi: 10.1002/jmri.28708
    [51] 卜姗姗, 肖江喜, 朱颖, 等. MR定量功能成像对杜氏肌营养不良与贝氏肌营养不良的鉴别诊断[J]. 中国医学影像学杂志, 2021, 29(2): 163-7.
    [52] Gao P, Perkowski M, Li YW, et al. An automated deep learning based muscular dystrophy detection and classification model[J]. Comput Mater Continua, 2022, 71(1): 305-20. doi: 10.32604/cmc.2022.020914
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  19
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-07
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回