Progress in the application of peritumoral radiomics in breast cancer research
-
摘要: 乳腺癌已成为威胁全球女性健康最常见的癌症类型。影像组学通过深入挖掘和分析医学图像的深层次信息,提供传统影像学检查及人眼无法识别的肿瘤内在异质性信息,但以往研究多围绕肿瘤本体特征,忽略了瘤周区域特征对乳腺癌的发生、发展及转移的作用,因此越来越多的研究开始探索瘤周影像组学特征的潜在应用价值。本文将围绕基于乳腺X线摄影、磁共振及超声成像的瘤周影像组学在乳腺癌的良恶性鉴别诊断、分子分型预测、治疗疗效评估、淋巴结转移及患者预后预测研究中的应用展开综述,阐述目前存在的局限性,并对其未来发展进行展望,为后续深入研究提供思路,以期促进乳腺癌精准医疗的进一步发展。Abstract: Breast cancer has become the most common type of cancer that threatens women's health worldwide. Radiomics provides intrinsic heterogeneity information of tumors that cannot be recognized by traditional imaging examinations and human eyes through in-depth excavation and analysis of deep-seated information of medical images. However, previous studies mostly focused on tumor ontology features, ignoring the role of peritumoral region features in the occurrence, development and metastasis of breast cancer. Therefore, more and more studies have begun to explore the potential application value of peritumoral radiomics features. This article will centre on the application of peritumoral radiomics based on mammography, magnetic resonance imaging and ultrasound imaging in the differential diagnosis of benign and malignant breast cancer, molecular typing prediction, evaluation of therapeutic efficacy, lymph node metastasis and prognosis prediction of patients, expound the existing limitations, and look forward to its future development, provide ideas for deeper research, expect to promote the further development of precision medicine for breast cancer.
-
Key words:
- breast cancer /
- peritumor /
- radiomics /
- prediction
-
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. doi: 10.3322/caac.21834 [2] 王昭华, 马彦云, 崔曹哲, 等. 探究不同乳腺实质区域的全视野数字化乳腺摄影影像组学对BI-RADS 4类病变鉴别的价值[J/OL]. 临床放射学杂志, 2024, 43(3): 346-51. [3] 郑璐, 汤铜, 赵茹, 等. MRI影像组学模型预测乳腺癌组织中HER-2低表达状态的价值[J]. 现代肿瘤医学, 2024, 32(6): 1110-4. [4] 刘婷婷, 林佳璐, 娄鉴娟, 等. 多参数MRI影像组学评估浸润性乳腺癌HER-2表达状态的临床应用价值[J]. 南京医科大学学报(自然科学版), 2024, 44(2): 218-27. [5] 赵楠楠, 朱芸, 汤晓敏, 等. 基于瘤内及瘤周MRI影像组学列线图预测乳腺癌腋窝淋巴结转移[J]. 磁共振成像, 2023, 14(3): 81-7, 94. [6] 徐海敏, 戴瑶, 马雨竹, 等. MR T1WI瘤体及瘤周影像组学联合临床特征预测乳腺癌新辅助化疗疗效[J]. 中国医学影像技术, 2023, 39 (10): 1520-5. [7] 韩剑剑, 马培旗, 王小雷, 等. 基于数字化乳腺X线影像组学列线图预测浸润性乳腺癌组织学分级的多中心研究[J]. 放射学实践, 2024, 39 (5): 634-40. [8] 王惠, 陈飞, 李金桥, 等. 乳腺癌ABVS超声影像组学特征联合ABVS超声及血清学特征预测HER2状态[J]. 中国超声医学杂志, 2024, 40(5): 516-20. [9] 谢宗玉, 姚文宇, 杨静茹, 等. 基于DCE-MRI影像组学列线图预测三阴性乳腺癌血管生成拟态表达状态的研究[J]. 蚌埠医学院学报, 2024, 49(4): 425-30. [10] 陈修婷, 李欣欣, 周大伟, 等. 基于瘤内与瘤周乳腺断层合成X线摄影影像组学列线图可有效预测乳腺癌腋窝淋巴结转移[J]. 分子影像学杂志, 2024, 47(5): 465-73. [11] Wang XY, Xie TS, Luo JR, et al. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment[J]. Breast Cancer Res, 2022, 24(1): 20. doi: 10.1186/s13058-022-01516-0 [12] Zhang YX, Liu FJ, Zhang H, et al. Diagnostic value of radiomics analysis in contrast-enhanced spectral mammography for identifying triple-negative breast cancer[J]. Front Oncol, 2021, 11: 773196. doi: 10.3389/fonc.2021.773196 [13] 魏竹馨, 文玲, 王希明. 影像基因组学在乳腺癌中的研究现状与进展[J]. 国际医学放射学杂志, 2020, 43(6): 681-5, 692. [14] Wang H, Chen W, Jiang SS, et al. Intra- and peritumoral radiomics features based on multicenter automatic breast volume scanner for noninvasive and preoperative prediction of HER2 status in breast cancer: a model ensemble research[J]. Sci Rep, 2024, 14(1): 5020. doi: 10.1038/s41598-024-55838-4 [15] Li CL, Song LR, Yin JD. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-14. doi: 10.1002/jmri.27651 [16] Zhou J, Tan HN, Li W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-60. doi: 10.1016/j.acra.2020.05.040 [17] Liu ZY, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-22. doi: 10.7150/thno.30309 [18] Pérez-Morales J, Tunali I, Stringfield O, et al. Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening[J]. Sci Rep, 2020, 10 (1): 10528. doi: 10.1038/s41598-020-67378-8 [19] Zhuo YY, Feng MX, Yang SY, et al. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma[J]. Transl Oncol, 2020, 13(10): 100820. doi: 10.1016/j.tranon.2020.100820 [20] 侯娟, 刘文亚. 肿瘤瘤周的影像组学研究进展[J]. 磁共振成像, 2024, 15(3): 230-24. [21] Chen RX, Qi YN, Huang Y, et al. Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population[J]. Breast Cancer Res Treat, 2023, 197 (1): 189-200. doi: 10.1007/s10549-022-06781-3 [22] Xu R, You T, Liu C, et al. Ultrasound-based radiomics model for predicting molecular biomarkers in breast cancer[J]. Front Oncol, 2023, 13: 1216446. doi: 10.3389/fonc.2023.1216446 [23] Wolff AC, Hammond MH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update[J]. J Clin Oncol, 2018, 36(20): 2105-22. doi: 10.1200/JCO.2018.77.8738 [24] Niu SX, Yu T, Cao Y, et al. Digital breast tomosynthesis-based peritumoral radiomics approaches in the differentiation of benign and malignant breast lesions[J]. Diagn Interv Radiol, 2022, 28(3): 217-25. [25] Wang SM, Sun YQ, Li RM, et al. Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions[J]. Eur Radiol, 2022, 32(1): 639-49. doi: 10.1007/s00330-021-08134-y [26] Zhang SJ, Shao HF, Li WJ, et al. Intra-and peritumoral radiomics for predicting malignant BiRADS category 4 breast lesions on contrast-enhanced spectral mammography: a multicenter study[J]. Eur Radiol, 2023, 33(8): 5411-22. doi: 10.1007/s00330-023-09513-3 [27] 张书海, 王小雷, 朱芸, 等. 基于瘤内及瘤周早期动态增强MRI的影像组学模型鉴别乳腺影像报告和数据系统4类肿瘤良性与恶性的价值[J]. 中华放射学杂志, 2022, 56(7): 758-65. doi: 10.3760/cma.j.cn112149-20210829-00616 [28] 师琳, 钟李长, 马方, 等. 瘤周超声影像组学对乳腺结节良恶性的鉴别诊断价值[J]. 肿瘤影像学, 2023, 32(6): 485-91. [29] Gradishar WJ, Moran MS, Abraham J, et al. NCCN guidelines® insights: breast cancer, version 4.2023[J]. J Natl Compr Canc Netw, 2023, 21(6): 594-608. doi: 10.6004/jnccn.2023.0031 [30] 李卓君, 杨晓芳, 姜增誉, 等. 基于DBT的瘤内和瘤周影像组学评估乳腺癌HER2状态的研究[J]. 临床放射学杂志, 2023, 42(9): 1436-41. [31] 明洁, 陈莹, 刘莹, 等. 基于DCE-MRI瘤内联合瘤周影像组学模型术前预测乳腺癌Ki-67表达状态的价值[J]. 磁共振成像, 2022, 13 (10): 132-7, 149. doi: 10.12015/issn.1674-8034.2022.10.020 [32] 张成孟, 丁治民, 陈鹏, 等. 基于DCE-MRI瘤内及瘤周影像组学联合TIC分型及Ki-67预测乳腺癌患者HER-2表达[J]. 磁共振成像, 2023, 14(4): 68-75. [33] 王伟康, 林桂涵, 陈春妙, 等. 基于MRI动态增强扫描瘤内联合瘤周影像组学列线图术前预测乳腺癌HER-2状态的价值[J]. 中国中西医结合影像学杂志, 2023, 21(3): 259-64. doi: 10.3969/j.issn.1672-0512.2023.03.006 [34] 陆欢, 葛敏, 王世威. 动态增强MRI瘤内与瘤周影像组学特征对三阴性乳腺癌的诊断价值研究[J]. 浙江医学, 2021, 43(15): 1647-51, 1710. doi: 10.12056/j.issn.1006-2785.2021.43.15.2020-2722 [35] Zhang SH, Wang XL, Yang Z, et al. Intra-and peritumoral radiomics model based on early DCE-MRI for preoperative prediction of molecular subtypes in invasive ductal breast carcinoma: a multitask machine learning study[J]. Front Oncol, 2022, 12: 905551. doi: 10.3389/fonc.2022.905551 [36] 吴韧, 李新宇, 陈随, 等. 基于动态增强MRI瘤内和瘤周的影像组学模型在预测三阴性乳腺癌的诊断价值[J/OL]. 医学研究与战创伤救治, 2023, 36(4): 375-81. [37] Braman N, Prasanna P, Whitney J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J]. JAMA Netw Open, 2019, 2(4): e192561. doi: 10.1001/jamanetworkopen.2019.2561 [38] Wu YM, Ma QQ, Fan LF, et al. An automated breast volume scanner-based intra-and peritumoral radiomics nomogram for the preoperative prediction of expression of ki-67 in breast malignancy [J]. Acad Radiol, 2024, 31(1): 93-103. doi: 10.1016/j.acra.2023.07.004 [39] Jiang T, Song JD, Wang XY, et al. Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI for predicting ki-67 level in breast cancer: a radiomics-based study[J]. Mol Imaging Biol, 2022, 24(4): 550-9. doi: 10.1007/s11307-021-01695-w [40] Niu SX, Jiang WY, Zhao NN, et al. Intra-and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148 (1): 97-106. doi: 10.1007/s00432-021-03822-0 [41] Tan HN, Wu YP, Bao FC, et al. Mammography-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer[J]. Br J Radiol, 2020, 93(1111): 20191019. doi: 10.1259/bjr.20191019 [42] Arefan D, Chai RM, Sun M, et al. Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features[J]. Med Phys, 2020, 47(12): 6334-42. doi: 10.1002/mp.14538 [43] Song DL, Yang F, Zhang YJ, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J]. Cancer Imaging, 2022, 22(1): 17. doi: 10.1186/s40644-022-00450-w [44] Lin F, Li Q, Wang ZY, et al. Intratumoral and peritumoral radiomics for preoperatively predicting the axillary non-sentinel lymph node metastasis in breast cancer on the basis of contrast-enhanced mammography: a multicenter study[J]. Br J Radiol, 2023, 96 (1143): 20220068. doi: 10.1259/bjr.20220068 [45] Liu Y, Li X, Zhu LN, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J]. Contrast Media Mol Imaging, 2022, 2022: 6729473. doi: 10.1155/2022/6729473 [46] 张成孟, 丁治民, 陈鹏, 等. 基于DCE-MRI瘤内及瘤周影像组学特征的机器学习模型预测乳腺癌腋窝淋巴结转移的价值[J]. 中国医学计算机成像杂志, 2023, 29(6): 618-24. doi: 10.3969/j.issn.1006-5741.2023.06.006 [47] Liu CL, Ding J, Spuhler K, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(1): 131-40. doi: 10.1002/jmri.26224 [48] Ding J, Chen SL, Serrano Sosa M, et al. Optimizing the peritumoral region size in radiomics analysis for sentinel lymph node status prediction in breast cancer[J]. Acad Radiol, 2022, 29(Suppl 1): S223-S228. [49] Duan YY, Chen XB, Li WY, et al. Multimodal radiomics and nomogram-based prediction of axillary lymph node metastasis in breast cancer: an analysis considering optimal peritumoral region [J]. J Clin Ultrasound, 2023, 51(7): 1231-41. doi: 10.1002/jcu.23520 [50] Derks MGM, van de Velde CJH. Neoadjuvant chemotherapy in breast cancer: more than just downsizing[J]. Lancet Oncol, 2018, 19(1): 2-3. doi: 10.1016/S1470-2045(17)30914-2 [51] Cortazar P, Zhang LJ, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-72. doi: 10.1016/S0140-6736(13)62422-8 [52] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials[J]. Lancet Oncol, 2018, 19 (1): 27-39. doi: 10.1016/S1470-2045(17)30777-5 [53] Mao N, Shi YH, Lian C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-19. doi: 10.1007/s00330-021-08414-7 [54] Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res, 2017, 19(1): 57. doi: 10.1186/s13058-017-0846-1 [55] Li CC, Lu N, He ZF, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-93. doi: 10.1245/s10434-022-12034-w
点击查看大图
计量
- 文章访问数: 47
- HTML全文浏览量: 24
- PDF下载量: 7
- 被引次数: 0