Construction of a prognostic model for renal cell carcinoma patients based on autophagyrelated genes and CT imaging characteristics
-
摘要:
目的 探究自噬相关基因在肾细胞癌发展中的作用,基于自噬相关的基因及CT影像特点构建肾细胞癌患者预后模型。 方法 从TCGA数据库下载肾透明细胞癌患者相关资料,结合自噬相关基因集,探索基于自噬相关基因的肾癌分子亚型及构建个体化自噬评分系统;通过分析TCIA数据库中肾细胞癌患者CT资料,构建自噬相关基因风险模型及影像组学模型预测肾癌患者预后。 结果 将肾透明细胞癌分为两种新的分子亚型,预后较差的亚型患者伴有大量免疫细胞浸润(P < 0.05),且临床分级更高、分期更晚(P < 0.05)。高自噬评分患者的肿瘤基因突变频率明显增加、肿瘤体积更大、更晚期、预后更差(P < 0.05)。影像组学联合自噬相关基因模型可较准确预测肾癌患者预后(曲线下面积0.922,95% CI:0.852~0.993)。 结论 自噬评分高的肾癌患者预后较差,影像组学联合自噬相关基因模型在预测肾癌患者预后中有较好前景。 Abstract:Objective To explore the role of autophagy-related genes in the development of renal cell carcinoma and construct a prognostic model for renal cell carcinoma patients based on autophagy-related genes and CT imaging characteristics. Methods The relevant data of patients with renal clear cell carcinoma were downloaded from the TCGA database. Combined with the autophagy-related gene set, the molecular subtypes of renal carcinoma based on autophagy-related genes and the construction of an individualized autophagy scoring system were explored; by analyzing the CT data of patients with renal cell carcinoma in the TCIA database, the autophagy-related gene risk model and the imaging omics model were constructed to predict the prognosis of patients with renal cancer. Results Renal clear cell carcinoma was divided into two new molecular subtypes. Patients with poor prognosis are accompanied by a large number of immune cell infiltration (P < 0.05), and have higher clinical grades and more advanced stages (P < 0.05). Patients with high autophagy scores have significantly increased tumor gene mutation frequencies, larger tumor volumes, more advanced stages, and worse prognoses (P < 0.05). Radiomics combined with autophagy-related gene model can accurately predict the prognosis of patients with renal cancer (AUC: 0.922, 95% CI: 0.852-0.993). Conclusion Renal cancer patients with high autophagy scores have a poor prognosis. Radiomics combined with autophagy-related gene model has good prospects in predicting the prognosis of patients with renal cancer. -
Key words:
- renal cell carcinoma /
- autophagy /
- radiomics /
- prognostic model
-
图 1 肾细胞癌患者自噬相关的基因与预后的相关性及其表达情况
Figure 1. Correlation and expression of autophagy-related genes with prognosis in patients with renal cell carcinoma. A: Univariate Cox regression analysis of autophagy-related genes; B: Heat map of the expression of 88 autophagy-related genes with prognostic value in tumor tissues and normal tissues.
图 2 构建基于自噬相关基因的肾细胞癌分子亚型及临床相关特征分析
Figure 2. Construction of renal cell carcinoma molecular subtypes based on autophagy-related genes and analysis of their relationship with clinically relevant features. A: Heat map of the consistency matrix when K=2, patients with renal clear cell carcinoma were divided into autophagic subtype A and autophagic subtype B; B: Relative change in area under the cumulative distribution function(CDF) curve from K=2 to 9; C: Relative change in the CDF from k=2 to 9; D: Kaplan-Meier survival analysis of patients with subtype A and subtype B; E: Heat map of clinical characteristics of patients with renal clear cell carcinoma molecular subtypes based on autophagy-related genes.
图 3 不同肾癌分子亚型患者的免疫免疫浸润情况
Figure 3. Immune infiltration in patients with different renal cell carcinoma molecular subtypes. A: ssGSEA evaluated the expression of 23 immune cells in patients with subtype A and subtype B; B: CIBERSORT evaluated the expression of 22 immune cells between subtype A and subtype B.
图 4 量化ccRCC患者个体化自噬水平及其与基因突变、临床特征的相关性
Figure 4. Quantifying the individualized autophagy level in ccRCC patients and its correlation with gene mutations and clinical characteristics. A: Principal component analysis of autophagy-related genes in ccRCC patients; B: The relation of PCA and autophagy subtypes; C: Kaplan-Meier survival analysis of patients by autophagy score; D: Comparison of autophagy score among autophagic subtypes; E: Waterfall of the top 20 mutated genes in the ccRCC patients with low autophagy score; F: Waterfall of the top 20 mutated genes in the ccRCC patients with high autophagy score; G: CT images of ccRCC patients grouped according to autophagy scores(Left: low autophagy score group patients TCGA-B0-5110; Right: high autophagy score group patients TCGA-B0-4698); H: Heat map of autophagy scores and clinical characteristics.
图 5 基于自噬相关基因的肾透明细胞癌患者风险模型及影像组学模型的构建与评估
Figure 5. Construction and evaluation of risk model and radiomics model for renal clear cell carcinoma patients based on autophagy-related genes. A: Kaplan-Meier survival analysis of all patients in different autophagy risk groups; B: Heat map of autophagy risk score and clinical characteristics of overall ccRCC patients; *P < 0.05, ***P < 0.001; C: CT images of ccRCC patients grouped according to different autophagy risk groups (Left: low autophagy risk group patients TCGA-B0-5121; Right: high autophagy risk group patients TCGA-B0-5706); D: ROC curve of autophagy risk score prediction model and other clinical characteristics in predicting the 1-year survival of overall ccRCC patients; E: ROC curve of autophagy risk score and radiomics model in predicting 1-year survival of 96 ccRCC patients.; F: Nomogram of 96 ccRCC patients based on autophagy risk score, radiomics and other clinical characteristics.
图 6 基于自噬相关基因风险模型的免疫浸润及免疫功能分析
Figure 6. Immune infiltration and immune function analysis based on autophagy-related gene risk model. A: Correlation between autophagy risk score and immune cells; B: Analysis of autophagy risk score and immune function; *P < 0.05, **P < 0.01, ***P < 0.001; C: Correlation between autophagy risk score and expression of 34 immune checkpoints.
-
[1] Moch H, Cubilla AL, Humphrey PA, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours[J]. Eur Urol, 2016, 70(1): 93-105. doi: 10.1016/j.eururo.2016.02.029 [2] Capitanio U, Montorsi F. Renal cancer[J]. Lancet, 2016, 387 (10021): 894-906. doi: 10.1016/S0140-6736(15)00046-X [3] Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy[J]. Dev Cell, 2004, 6(4): 463-77. doi: 10.1016/S1534-5807(04)00099-1 [4] Peng YF, Shi YH, Shen YH, et al. Promoting colonization in metastatic HCC cells by modulation of autophagy[J]. PLoS One, 2013, 8(9): e74407. doi: 10.1371/journal.pone.0074407 [5] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis [J]. Science, 2011, 331(6024): 1559-64. doi: 10.1126/science.1203543 [6] Nishikawa M, Miyake H, Liu B, et al. Expression pattern of autophagy-related markers in non-metastatic clear cell renal cell carcinoma: association with disease recurrence following radical nephrectomy[J]. J Cancer Res Clin Oncol, 2015, 141(9): 1585-91. doi: 10.1007/s00432-015-1923-4 [7] Liang L, Yang Z, Deng Q, et al. Expression and mechanism of autophagy gene Beclin1 in tumor microenvironment of renal cell carcinoma[J]. Minerva, 2022, 113(1): 210-2. [8] 范大为, 刘凯, 袁成刚, 等. Beclin-1在肾癌组织中的表达及其临床意义[J]. 中华腔镜泌尿外科杂志: 电子版, 2015, 9(2): 96-100. doi: 10.3877/cma.j.issn.1674-3253.2015.02.004 [9] Zhang GY, Zhang L, Sun S, et al. Identification of a novel defined immune-autophagy-related gene signature associated with clinical and prognostic features of kidney renal clear cell carcinoma[J]. Front Mol Biosci, 2021, 8: 790804. doi: 10.3389/fmolb.2021.790804 [10] He MX, Li MR, Guan YB, et al. A new prognostic risk score: based on the analysis of autophagy-related genes and renal cell carcinoma [J]. Front Genet, 2022, 12: 820154. doi: 10.3389/fgene.2021.820154 [11] Warren AY, Harrison D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies[J]. World J Urol, 2018, 36(12): 1913-26. doi: 10.1007/s00345-018-2447-8 [12] Li YZ, Lih TS M, Dhanasekaran SM, et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness[J]. Cancer Cell, 2023, 41(1): 139-63. e17. doi: 10.1016/j.ccell.2022.12.001 [13] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-62. doi: 10.1038/nrclinonc.2017.141 [14] Gullo RL, Daimiel I, Morris EA, et al. Combining molecular and imaging metrics in cancer: radiogenomics[J]. Insights Imaging, 2020, 11(1): 1. doi: 10.1186/s13244-019-0795-6 [15] 张海捷, 殷夫, 陈梦林, 等. 基于3D增强CT影像组学的肾癌亚型三分类预测模型[J]. 分子影像学杂志, 2021, 44(3): 427-34. doi: 10.12122/j.issn.1674-4500.2021.03.03 [16] Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis[J]. J Natl Cancer Inst, 2006, 98(4): 262-72. doi: 10.1093/jnci/djj052 [17] Zeng DQ, Li MY, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures[J]. Cancer Immunol Res, 2019, 7(5): 737-50. doi: 10.1158/2326-6066.CIR-18-0436 [18] Zhang B, Wu Q, Li B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53-73. doi: 10.1186/s12943-020-01170-0 [19] He Y, Jiang ZH, Chen C, et al. Classification of triple-negative breast cancers based on Immunogenomic profiling[J]. J Exp Clin Cancer Res, 2018, 37(1): 327. doi: 10.1186/s13046-018-1002-1 [20] Liu BT, Chen XN, Zhan YH, et al. Identification of a gene signature for renal cell carcinoma-associated fibroblasts mediating cancer progression and affecting prognosis[J]. Front Cell Dev Biol, 2020, 8: 604627. [21] Malouf GG, Flippot R, Dong YY, et al. Molecular characterization of sarcomatoid clear cell renal cell carcinoma unveils new candidate oncogenic drivers[J]. Sci Rep, 2020, 10(1): 701. doi: 10.1038/s41598-020-57534-5 [22] Xiao HB, Qu Y, Li HL, et al. HIF-2α/LINC02609/APOL1-mediated lipid storage promotes endoplasmic reticulum homeostasis and regulates tumor progression in clear-cell renal cell carcinoma[J]. J Exp Clin Cancer Res, 2024, 43(1): 29. doi: 10.1186/s13046-023-02940-6 [23] Hong SH, Lee YJ, Jang EB, et al. Therapeutic efficacy of YM155 to regulate an epigenetic enzyme in major subtypes of RCC[J]. Int J Mol Sci, 2023, 25(1): 216. doi: 10.3390/ijms25010216 [24] Zeng JY, Ke CB, Tian KW, et al. Highly expressed of BID indicates poor prognosis and mediates different tumor microenvironment characteristics in clear cell renal cell carcinoma [J]. Discov Oncol, 2024, 15(1): 176. doi: 10.1007/s12672-024-01035-8 [25] Hall DP, Cost NG, Hegde S, et al. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma[J]. Cancer Cell, 2014, 26(5): 738-53. doi: 10.1016/j.ccell.2014.09.015 [26] Zhang HJ, Yin F, Chen ML, et al. CT-based radiomics model using stability selection for predicting the World Health organization/ International society of urological pathology grade of clear cell renal cell carcinoma[J]. Br J Radiol, 2024, 97(1158): 1169-79. doi: 10.1093/bjr/tqae078 [27] Wang W, Cao KM, Jin SM, et al. Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis[J]. Eur Radiol, 2020, 30(10): 5738-47. doi: 10.1007/s00330-020-06896-5 [28] Moses K, Brandau S. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells[J]. Semin Immunol, 2016, 28(2): 187-96. doi: 10.1016/j.smim.2016.03.018 [29] Chen XQ, Meng FQ, Jiang RC. Neutrophil-to-lymphocyte ratio as a prognostic biomarker for patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Front Oncol, 2021, 11: 746976. doi: 10.3389/fonc.2021.746976 [30] Shen JW, Wang RJ, Chen Y, et al. Prognostic significance and mechanisms of CXCL genes in clear cell renal cell carcinoma[J]. Aging, 2023, 15(16): 7974-96. doi: 10.18632/aging.204922