留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

钆塞酸二钠增强MRI列线图可在患者术前有效预测肝细胞癌Ki-67的表达

于红梅 陈敏 杨娅 吴杰 刘轶 王鹏

于红梅, 陈敏, 杨娅, 吴杰, 刘轶, 王鹏. 钆塞酸二钠增强MRI列线图可在患者术前有效预测肝细胞癌Ki-67的表达[J]. 分子影像学杂志, 2024, 47(10): 1074-1080. doi: 10.12122/j.issn.1674-4500.2024.10.08
引用本文: 于红梅, 陈敏, 杨娅, 吴杰, 刘轶, 王鹏. 钆塞酸二钠增强MRI列线图可在患者术前有效预测肝细胞癌Ki-67的表达[J]. 分子影像学杂志, 2024, 47(10): 1074-1080. doi: 10.12122/j.issn.1674-4500.2024.10.08
YU Hongmei, CHEN Min, YANG Ya, WU Jie, LIU Yi, WANG Peng. The MRI histogram enhanced by disodium gadosenate can effectively predict the expression of Ki-67 in hepatocellular carcinoma before operation[J]. Journal of Molecular Imaging, 2024, 47(10): 1074-1080. doi: 10.12122/j.issn.1674-4500.2024.10.08
Citation: YU Hongmei, CHEN Min, YANG Ya, WU Jie, LIU Yi, WANG Peng. The MRI histogram enhanced by disodium gadosenate can effectively predict the expression of Ki-67 in hepatocellular carcinoma before operation[J]. Journal of Molecular Imaging, 2024, 47(10): 1074-1080. doi: 10.12122/j.issn.1674-4500.2024.10.08

钆塞酸二钠增强MRI列线图可在患者术前有效预测肝细胞癌Ki-67的表达

doi: 10.12122/j.issn.1674-4500.2024.10.08
基金项目: 

西部战区总医院院管课题 2024-YGJS-B01

详细信息
    作者简介:

    于红梅,硕士,副主任医师,E-mail: 285230293@qq.com

    通讯作者:

    王鹏,硕士,副主任医师,E-mail: kl415@qq.com

The MRI histogram enhanced by disodium gadosenate can effectively predict the expression of Ki-67 in hepatocellular carcinoma before operation

  • 摘要:   目的  探讨钆塞酸二钠增强MRI列线图在术前预测肝细胞癌Ki-67表达状态的应用价值。  方法  回顾性分析本院2022年1月~2024年5月经病理诊断的122例肝细胞癌患者的资料,根据术后免疫组化细胞增殖水平(Ki-67指数)将患者分为Ki-67高表达组(n=71)和Ki-67低表达组(n=51),并按7:3比例随机分为训练集(n=85)和验证集(n=37),分析两组患者影像学参数[肿瘤直径、边缘、假包膜、瘤体区表观弥散系数(ADC)、肝胆期信号强度与正常肝实质信号强度比(SIR)、瘤周低信号]、AFP浓度及肿瘤分化程度差异,纳入LASSO回归模型筛选出最具价值的参数,并行多因素Logistic回归分析建立预测模型构建列线图,通过ROC曲线、校准曲线和决策曲线评估模型效能。  结果  训练集及验证集Ki-67高表达组甲胎蛋白≥20 ng/mL、肿瘤边缘不光滑、瘤周低信号高于Ki-67低表达组,ADC值和SIR低于Ki-67低表达组,差异有统计学意义(P < 0.05),而肿瘤直径、假包膜的差异无统计学意义(P > 0.05)。应用LASSO回归筛选出3个最有价值参数(肿瘤ADC值、SIR及肿瘤分化程度),多因素Logistic回归分析显示ADC值及SIR是Ki-67表达影响因素,基于以上参数建立列线图模型,其校准曲线与理想曲线贴合良好,其ROC曲线下面积为0.827,敏感度为81.2%,特异度为80%。  结论  钆塞酸二钠增强MRI列线图模型可在术前有效预测肝细胞癌Ki-67表达状态,从而实现肝细胞癌患者风险分层及个体化治疗。

     

  • 图  1  HCC Ki-67高表达组(Ki-67:30%),中分化HCC,AFP:10.77 ng/mL

    Figure  1.  HCC Ki-67 high expression group (Ki-67: 30%), moderately differentiated HCC, AFP: 10.77 ng/mL. Male, 49 years old, history of hepatitis B more than 20 years, right upper abdominal distending pain more than 1 month. Liver S6 mass shadow, the edge is not smooth, lipid suppression T1WI showed slightly low signal (A), T2WI showed slightly high signal (B), DWI showed slightly high signal (C), ADC value was 0.786 × 10-3 mm2/s, the enhancement was significantly enhanced in the arterial phase (D), the enhancement degree was reduced in the venous phase (E), and the signal was low in the hepatobiliary phase. The signal intensity ratio was 0.490, and peri-tumor low signal (F) was observed.

    图  2  HCC低表达组(Ki-67:10%),高分化HCC,AFP:4.04 ng/mL

    Figure  2.  HCC low expression group (Ki-67: 10%), highly differentiated HCC, AFP: 4.04 ng/mL. Male, 69 years old, physical examination revealed liver mass. Liver S8 mass shadow, smooth edge, lipid suppression T1WI slightly low signal (A), T2WI slightly high signal (B), DWI slightly high signal (C), ADC value of 0.945 × 10-3 mm2/s, enhanced significantly in the arterial phase (D), decreased in the venous phase, see false envelope ring enhancement (E). The signal intensity ratio was 0.989, and there was no low signal around tumor (F).

    图  3  LASSO回归参数筛选

    Figure  3.  LASSO regression parameter selection.

    图  4  预测模型列线图

    Figure  4.  Prediction model nomogram.

    图  5  训练集与验证集校准曲线

    Figure  5.  Training set and validation set calibration curve.

    图  6  训练集与验证集决策曲线

    Figure  6.  The training set and validation set decision-making curve.

    图  7  训练集与验证集ROC曲线

    Figure  7.  The training set and validation set ROC curve.

    表  1  两组患者基本资料及分类变量对比

    Table  1.   Comparison of patients with basic information and classification variables between the two groups [n(%)]

    Index Training set (n=85) Validation set (n=37)
    Ki-67 high expression group Ki-67 low expression group P Ki-67 high expression group Ki-67 low expression group P
    Gender 0.492 0.629
      Male 41(83.7) 29(80.6) 18(81.8) 14(93.3)
      Female 8(16.3) 7(19.4) 4(18.2) 1(6.7)
    Age (year, Mean±SD) 54.6±12.2 58.1±12.9 0.201 57.7±8.4 60.2±9.1 0.392
    Edge 0.003 0.037
      Smooth 13(26.5) 21(58.3) 7(31.8) 10(66.7)
      Rough 36(73.5) 15(41.7) 15(68.2) 5(33.3)
    Pseudocapsule 0.714 0.361
      Show 35(71.4) 27(75.0) 7(31.8) 7(46.7)
      Not shown 14(28.6) 9(25.0) 15(68.2) 8(53.5)
    Low peritumoral signal 0.011 0.022
      Without 19(38.8) 24(66.7) 5(22.7) 9(60.0)
      Exist 30(61.2) 12(33.3) 17(77.3) 6(40.0)
    AFP (ng/mL) 0.013 0.009
       < 20 18(36.7) 23(63.9) 4(18.2) 9(60.0)
      ≥20 31(63.3) 13(36.1) 18(81.8) 6(40.0)
    Differentiated degree < 0.001 0.047
      Poorly differentiated 7(14.3) 4(11.1) 5(22.7) 0(0)
      Moderately differentiated 39(79.6) 17(47.2) 15(68.2) 10(66.7)
      Well differentiated 3(6.1) 15(41.7) 2(9.1) 5(33.3)
    AFP: Alpha fetoprotein.
    下载: 导出CSV

    表  2  两组资料MRI定量参数对比分析

    Table  2.   Comparative analysis of MRI quantitative parameters between the two groups [M(P25, P75)]

    Index Training set (n=85) Validation set (n=37)
    Ki-67 high expression group Ki-67 low expression group Z P Ki-67 high expression group Ki-67 low expression group Z P
    Diameter of tumor(cm) 4.00(2.25, 6.90) 3.25(2.35, 5.33) -0.903 0.366 4.15(3.18, 10.0) 3.70(2.00, 6.80) -1.022 0.307
    ADC (×10-3mm2/s) 0.801(0.743, 0.855) 0.878 (0.930, 0.935) -3.740 < 0.001 0.797(0.702, 0.858) 0.881(0.846, 0.915) -3.125 0.002
    SIR 0.546(0.487, 0.623) 0.614 (0.518, 0.684) -2.450 0.014 0.537(0.482, 0.645) 0.692(0.605, 0.806) -3.186 0.001
    下载: 导出CSV
  • [1] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 磁共振成像, 2024, 15(6): 1-18.
    [2] 李照, 朱继业. 《原发性肝癌诊疗指南(2024年版)》解读[J]. 临床肝胆病杂志, 2024, 40(7): 1324-7.
    [3] Singal AG, Kanwal F, Llovet JM. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy[J]. Nat Rev Clin Oncol, 2023, 20(12): 864-84. doi: 10.1038/s41571-023-00825-3
    [4] Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review[J]. JAMA Surg, 2023, 158(4): 410-20. doi: 10.1001/jamasurg.2022.7989
    [5] 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2024年版[) J]. 中华外科杂志, 2024, 62(6): 477-503. doi: 10.3760/cma.j.cn112139-20240417-00187
    [6] Menon SS, Guruvayoorappan C, Sakthivel KM, et al. Ki-67 protein as a tumour proliferation marker[J]. Clin Chim Acta, 2019, 491: 39-45. doi: 10.1016/j.cca.2019.01.011
    [7] Ramos-Santillan V, Oshi M, Nelson E, et al. High Ki67 gene expression is associated with aggressive phenotype in hepatocellular carcinoma[J]. World J Oncol, 2024, 15(2): 257-67. doi: 10.14740/wjon1751
    [8] 张瑶, 张林启, 陈景标, 等. 钆贝葡胺与钆塞酸二钠增强MRI诊断HBV相关肝癌包膜的效能比较[J]. 中华肝脏外科手术学电子杂志, 2020, 9(1): 72-6. doi: 10.3877/cma.j.issn.2095-3232.2020.01.016
    [9] 罗琳, 单鸿, 王劲. 钆塞酸二钠在肝硬化性结节及小肝癌评估中的应用进展[J]. 中华肝胆外科杂志, 2013, 19(12): 955-60. doi: 10.3760/cma.j.issn.1007-8118.2013.12.020
    [10] Li KZ, Wang BP. The value of CT perfusion parameters and apparent diffusion coefficient value of magnetic resonance diffusion weighted imaging in diagnosis of hepatocellular carcinoma[J]. Comput Math Methods Med, 2022, 2022: 2771869.
    [11] Tang MM, Zhou Q, Huang MQ, et al. Nomogram development and validation to predict hepatocellular carcinoma tumor behavior by preoperative gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2021, 31(11): 8615-27. doi: 10.1007/s00330-021-07941-7
    [12] Ye Z, Jiang HY, Chen J, et al. Texture analysis on gadoxetic acid enhanced-MRI for predicting Ki-67 status in hepatocellular carcinoma: a prospective study[J]. Chin J Cancer Res, 2019, 31(5): 806-17. doi: 10.21147/j.issn.1000-9604.2019.05.10
    [13] 胡梦洁, 郁义星, 范艳芬, 等. 钆塞酸二钠增强MRI列线图模型在预测肝细胞肝癌Ki-67表达中的应用价值[J]. 中华放射学杂志, 2020, 54(12): 1185-90. doi: 10.3760/cma.j.cn112149-20191206-00968
    [14] Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a metaanalysis. Part 2: ADCmin[J]. Oncotarget, 2018, 9(9): 8675-80. doi: 10.18632/oncotarget.24006
    [15] Surov A, Eger KI, Potratz J, et al. Apparent diffusion coefficient correlates with different histopathological features in several intrahepatic tumors[J]. Eur Radiol, 2023, 33(9): 5955-64. doi: 10.1007/s00330-023-09788-6
    [16] 王海, 连永伟, 颜显杰, 等. 基于动态增强MRI纹理分析术前预测肝细胞癌Ki-67表达状态的价值[J]. 放射学实践, 2022, 37(6): 729-33.
    [17] Yang XH, Ni HH, Lu Z, et al. Mesenchymal circulating tumor cells and Ki67: their mutual correlation and prognostic implications in hepatocellular carcinoma[J]. BMC Cancer, 2023, 23(1): 10. doi: 10.1186/s12885-023-10503-3
    [18] Surov A, Meyer HJ, Wienke A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: a metaanalysis. Part 1: ADCmean[J]. Oncotarget, 2017, 8(43): 75434-44. doi: 10.18632/oncotarget.20406
    [19] Wang XD, Li L, Wang LJ, et al. The expression of Ki-67 and Glypican-3 in hepatocellular carcinoma was evaluated by comparing DWI and 18F-FDG PET/CT[J]. Front Oncol, 2023, 13: 1026245. doi: 10.3389/fonc.2023.1026245
    [20] Yan Y, Lin XS, Ming WZ, et al. Radiomic analysis based on GdEOB-DTPA enhanced MRI for the preoperative prediction of ki-67 expression in hepatocellular carcinoma[J]. Acad Radiol, 2024, 31 (3): 859-69. doi: 10.1016/j.acra.2023.07.019
    [21] Qiu GB, Chen JC, Liao WX, et al. Gadoxetic acid-enhanced MRI combined with T1 mapping and clinical factors to predict Ki-67 expression of hepatocellular carcinoma[J]. Front Oncol, 2023, 13: 1134646. doi: 10.3389/fonc.2023.1134646
    [22] 刘明明, 李云芳, 孙君, 等. 扩散加权成像定量指标在小肝细胞癌组织学分级中的应用[J]. 临床放射学杂志, 2020, 39(2): 330-4.
    [23] Granata V, Fusco R, Amato DM, et al. Beyond the vascular profile: conventional DWI, IVIM and kurtosis in the assessment of hepatocellular carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24 (13): 7284-93.
    [24] 焦琳琳, 段崇锋, 于海洋, 等. 钆塞酸二钠增强MRI定量及定性评价肝癌微血管侵犯的价值[J]. 放射学实践, 2021, 36(8): 1026-31.
    [25] 田雅琪, 胡亚彬, 彭琪琪, 等. 钆塞酸二钠增强MRI列线图模型预测小肝癌微血管侵犯的价值[J]. 磁共振成像, 2021, 12(10): 57-60, 65. doi: 10.12015/issn.1674-8034.2021.10.013
    [26] 罗紫薇, 于海洋, 刘华秀, 等. 基于钆塞酸二钠增强MRI肝胆期图像影像组学模型评估肝癌微血管侵犯分级的价值[J]. 磁共振成像, 2023, 14(4): 95-101, 114.
    [27] 王学东, 陈敏, 刘秀娟, 等. 非对称回波的最小二乘估算法迭代水脂分离序列和弥散加权成像评估肝细胞癌Ki-67表达[J]. 中国医学影像技术, 2022, 38(1): 98-102.
    [28] Liu ZW, Yang SM, Chen XJ, et al. Nomogram development and validation to predict Ki-67 expression of hepatocellular carcinoma derived from Gd-EOB-DTPA-enhanced MRI combined with T1 mapping[J]. Front Oncol, 2022, 12: 954445. doi: 10.3389/fonc.2022.954445
    [29] Fan YF, Yu YX, Wang XM, et al. Radiomic analysis of Gd-EOBDTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma[J]. BMC Med Imaging, 2021, 21(1): 100. doi: 10.1186/s12880-021-00633-0
    [30] Lei HJ, Wang SY, Chau IY, et al. Hepatoma upregulated protein and Ki-67 expression in resectable hepatocellular carcinoma[J]. J Chin Med Assoc, 2021, 84(6): 623-32. doi: 10.1097/JCMA.0000000000000540
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回