留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

双能量CT影像组学模型可在术前预测胃间质瘤Ki-67的表达

陈素月 陈望 郭荣

陈素月, 陈望, 郭荣. 双能量CT影像组学模型可在术前预测胃间质瘤Ki-67的表达[J]. 分子影像学杂志, 2024, 47(10): 1067-1073. doi: 10.12122/j.issn.1674-4500.2024.10.07
引用本文: 陈素月, 陈望, 郭荣. 双能量CT影像组学模型可在术前预测胃间质瘤Ki-67的表达[J]. 分子影像学杂志, 2024, 47(10): 1067-1073. doi: 10.12122/j.issn.1674-4500.2024.10.07
CHEN Suyue, CHEN Wang, GUO Rong. The dual-energy CT imaging model can predict the expression of Ki-67 in gastric stromal tumors before operation[J]. Journal of Molecular Imaging, 2024, 47(10): 1067-1073. doi: 10.12122/j.issn.1674-4500.2024.10.07
Citation: CHEN Suyue, CHEN Wang, GUO Rong. The dual-energy CT imaging model can predict the expression of Ki-67 in gastric stromal tumors before operation[J]. Journal of Molecular Imaging, 2024, 47(10): 1067-1073. doi: 10.12122/j.issn.1674-4500.2024.10.07

双能量CT影像组学模型可在术前预测胃间质瘤Ki-67的表达

doi: 10.12122/j.issn.1674-4500.2024.10.07
基金项目: 

中国红十字基金会医学赋能公益专项基金-2022年领航菁英临床科研项目 XM_LHJY2022_05_33

详细信息
    作者简介:

    陈素月,主治医师,E-mail: ai_yue_@126.com

    通讯作者:

    郭荣,副主任医师,E-mail: 113884749@qq.com

The dual-energy CT imaging model can predict the expression of Ki-67 in gastric stromal tumors before operation

  • 摘要:   目的  探讨基于双能量CT联合影像组学模型评估胃间质瘤(GST)Ki-67表达水平的应用价值。  方法  回顾性收集盐城市第一人民医院2021年11月~2023年9月行双能量CT增强扫描并经手术病理及免疫组化确诊的GST患者105例。按照7:3的比例随机分为训练组(n=74)及测试组(n=31)根据术后免疫组化结果再分为Ki-67高表达组及Ki-67低表达组。记录所有患者的一般临床特点,分析肿瘤的常规CT特征,于静脉期图像测量、计算病灶双能量CT定量参数、提取影像组学特征,利用单因素分析及LASSO算法对上述特征进行筛选,使用Logistic回归分别构建常规CT征象模型、双能量CT模型、影像组学模型及联合模型。采用ROC曲线下面积对各模型诊断效能进行比较。使用DeLong检验比较各模型间曲线下面积的差异。  结果  肿瘤最大径、标准化碘浓度、能谱曲线斜率及6个影像组学特征在两组间的差异有统计学意义(P < 0.05),联合模型为最佳模型,具有最高的预测效能。联合模型与其他3个模型间的差异均有统计学意义(P < 0.05),其余各模型间差异无统计学意义(P > 0.05)。  结论  基于双能量CT联合影像组学模型在评估GST Ki-67表达水平方面具有一定的临床价值。

     

  • 图  1  双能量CT参数

    Figure  1.  Dual-energy CT parameters. A-B: iodograms and energy profile plots of patients with Ki-67 high-expression GST; C-D: iodograms and energy profile plots of patients with Ki-67 low-expression GST.

    图  2  影像组学特征筛选

    Figure  2.  Screening of imaging histologic features. A: distribution of regression coefficients; B: 10-fold cross-validation plot; C: screened imaging histologic features.

    图  3  各模型的诊断效能比较

    Figure  3.  Comparison of the diagnostic efficacy of the models. A: ROC for each model in the training group; B: ROC for each model in the testing group.

    表  1  训练组及测试组患者一般临床特点及常规CT征象比较

    Table  1.   Comparison of general clinical characteristics and routine CT signs of patients in the training and test groups

    Index Training group Test group
    Low expression(n=56) High expression(n=18) χ2/t P Low expression(n=19) High expression(n=12) χ2/t P
    Age (year, Mean±SD) 62.86±8.41 60.61±7.27 -1.016 0.313 63.42±6.75 65.33±9.63 0.651 0.520
    Gender [n(%)] 3.609 0.057 1.777 0.183
      Female 36(83.7) 7(16.3) 11(73.3) 4(26.7)
      Male 20(64.5) 11(35.5) 8(50.0) 8(50.0)
    Clinical symptom [n(%)] 0.147 0.701 0.176 0.675
      No 19(73.1) 7(26.9) 5(55.6) 4(44.4)
      Yes 37(77.1) 11(22.9) 14(63.6) 8(36.4)
    Portion [n(%)] 0.342 0.559 1.052 0.305
      Body 33(73.7) 12(26.7) 13(68.4) 6(31.6)
      Fundus 23(79.3) 6(20.7) 6(50.0) 6(50.0)
    Growth method [n(%)] 1.729 0.421 1.057 0.590
      Intracavitary 26(74.3) 9(25.7) 11(68.8) 5(31.2)
      Extragastric 25(73.5) 9(26.5) 6(50.0) 6(50.0)
      Both 5(100.0) 0(0.0) 2(66.7) 1(33.3)
    Morphology [n(%)] 2.306 0.129 1.517 0.218
      Orbicular 39(81.3) 9(18.8) 15(68.2) 7(31.8)
      Irregular 17(65.4) 9(34.6) 4(44.4) 5(55.6)
    Calcify [n(%)] 0.149 0.700 0.247 0.619
      No 41(74.5) 14(25.5) 17(63.0) 10(37.0)
      Yes 15(78.9) 4(21.1) 2(50.0) 2(50.0)
    Necrotic [n(%)] 1.028 0.272 3.656 0.056
      No 39(79.6) 10(20.4) 13(76.5) 4(23.5)
      Yes 17(68.0) 8(32.0) 6(42.9) 8(57.1)
    Ulcers [n(%)] 2.511 0.113 0.327 0.567
      No 47(79.7) 12(20.3) 13(65.0) 7(35.0)
      Yes 9(60.0) 6(40.0) 6(54.5) 5(45.5)
    Maximum diameter (mm, Mean±SD) 32.46±20.07 65.50±59.18 2.255 0.037 31.00±16.53 54.42±18.45 3.688 0.001
    下载: 导出CSV

    表  2  训练组及测试组双能量CT参数比较

    Table  2.   Comparison of dual-energy CT parameters in the training and test group (Mean±SD)

    Index Training group Test group
    Low expression(n=56) High expression(n=18) χ2/t P Low expression(n=19) High expression(n=12) χ2/t P
    NIC (mg/mL) 25.13±3.26 29.51±4.35 2.478 0.016 27.98±5.35 32.55±3.73 4.024 0.001
    K 1.87±0.65 2.59±1.04 2.736 0.012 2.37±0.59 3.37±1.06 2.985 0.009
    NIC: Normalized iodine concentration; K: Slope of energy spectrum curve.
    下载: 导出CSV

    表  3  各模型在训练组及测试组诊断效能中的比较

    Table  3.   Comparison of the models in the training and test groups

    Group AUC Sensitivity(%) Specificity(%) 95% CI
    Training group
      Conventional CT signs model 0.682 67 75 0.518-0.846
      Dual-energy CT parameters model 0.707 72 75 0.543-0.871
      Radiomics model 0.666 72 64 0.531-0.801
      Combind model 0.794 61 84 0.669-0.918
    Test group
      Conventional CT signs model 0.759 66 78 0.571-0.866
      Dual-energy CT parameters model 0.798 75 77 0.629-0.868
      Radiomics model 0.829 72 75 0.683-0.875
      Combind model 0.947 82 79 0.772-0.967
    下载: 导出CSV
  • [1] Dermawan JK, Rubin BP. Molecular pathogenesis of gastrointestinal stromal tumor: a paradigm for personalized medicine[J]. Annu Rev Pathol, 2022, 17: 323-44. doi: 10.1146/annurev-pathol-042220-021510
    [2] Blay JY, Kang YK, Nishida T, et al. Gastrointestinal stromal tumours[J]. Nat Rev Dis Primers, 2021, 7(1): 22. doi: 10.1038/s41572-021-00254-5
    [3] Gerdes J, Lemke H, Baisch H, et al. Cell cycle analysis of a cell proliferation- associated human nuclear antigen defined by the monoclonal antibody Ki-67[J]. J Immunol, 1984, 133(4): 1710-5. doi: 10.4049/jimmunol.133.4.1710
    [4] Liu QX, Peng ZH, Shen LF, et al. Prognostic and clinicopathological value of ki-67 in melanoma: a meta-analysis[J]. Front Oncol, 2021, 11: 737760. doi: 10.3389/fonc.2021.737760
    [5] Flores AR, Rêma A, Mesquita JR, et al. Vimentin and Ki-67 immunolabeling in canine gastric carcinomas and their prognostic value[J]. Vet Pathol, 2022, 59(6): 903-14. doi: 10.1177/03009858221117858
    [6] Gown AM. The biomarker ki-67: promise, potential, and problems in breast cancer[J]. Appl Immunohistochem Mol Morphol, 2023, 31 (7): 478-84. doi: 10.1097/PAI.0000000000001087
    [7] Kadado KJ, Abernathy OL, Salyers WJ, et al. Gastrointestinal stromal tumor and ki-67 as a prognostic indicator[J]. Cureus, 2022, 14(1): e20868.
    [8] Ma B, Huang XT, Zou GJ, et al. Relationship between Ki-67 and CD44 expression and microvascular formation in gastric stromal tumor tissues[J]. World J Clin Cases, 2022, 10(2): 469-76. doi: 10.12998/wjcc.v10.i2.469
    [9] 陈泓臻, 邱惠芳. 胃肠道间质瘤患者Ki-67和钙激活通道蛋白1表达与预后的关系[J]. 浙江医学, 2022, 44(23): 2526-30. doi: 10.12056/j.issn.1006-2785.2022.44.23.2022-1785
    [10] 陈长波, 马俊, 兰小惠. 胃肠道间质瘤CT诊断及与病理肿瘤恶性潜能相关性分析[J]. 中国CT和MRI杂志, 2022, 20(6): 156-8. doi: 10.3969/j.issn.1672-5131.2022.06.051
    [11] 郭建榕, 蔡美花, 吴立萍. 老年胃肠道间质瘤患者临床诊断中多层螺旋CT应用的准确性[J]. 中国老年学杂志, 2021, 41(19): 4206-9. doi: 10.3969/j.issn.1005-9202.2021.19.015
    [12] 陈馨, 陈晓, 刘永康, 等. DCE-CT鉴别诊断胃异位胰腺和间质瘤的价值[J]. 放射学实践, 2020, 35(8): 1048-53.
    [13] 张于凤, 李辉, 李晶晶, 等. 能谱CT多模态参数联合临床参数对胃间质瘤Ki-67的预测价值[J]. 分子影像学杂志, 2022, 45(5): 688-692. doi: 10.12122/j.issn.1674-4500.2022.05.11
    [14] 王学东, 刘爱连, 田士峰, 等. 单源双能CT能谱分析定量参数预测胃间质瘤Ki-67表达的可行性研究[J]. 放射学实践, 2020, 35(7): 893-9.
    [15] 原士超, 赵庆, 范红燕. 双能CT对胃间质瘤中Ki-67表达的预测价值及其与病理参数的关系[J]. 临床荟萃, 2021, 36(11): 1013-8. doi: 10.3969/j.issn.1004-583X.2021.11.011
    [16] Liu Y, He CY, Fang WD, et al. Prediction of Ki-67 expression in gastrointestinal stromal tumors using radiomics of plain and multiphase contrast-enhanced CT[J]. Eur Radiol, 2023, 33(11): 7609-17. doi: 10.1007/s00330-023-09727-5
    [17] Zhang QW, Gao YJ, Zhang RY, et al. Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort[J]. Clin Transl Med, 2020, 9(1): 12. doi: 10.1186/s40169-020-0263-4
    [18] 刘芸, 李传明, 曾平, 等. 基于动脉期增强CT影像组学模型鉴别小肠间质瘤组织中Ki-67表达状态的应用[J]. 胃肠病学和肝病学杂志, 2023, 32(4): 405-8. doi: 10.3969/j.issn.1006-5709.2023.04.009
    [19] 李根, 刘琨, 于海韵, 等. 基于增强CT的深度学习模型预测胃肠道间质瘤Ki-67表达的双中心研究[J]. 国际医学放射学杂志, 2024, 47 (2): 172-7.
    [20] Cai W, Guo K, Chen YX, et al. Sub-regional CT radiomics for the prediction of ki-67 proliferation index in gastrointestinal stromal tumors: a multi-center study[J]. Acad Radiol, 2024: S1076-S6332 (24)00421-5.
    [21] Zhao YL, Feng MB, Wang MH, et al. CT radiomics for the preoperative prediction of Ki67 index in gastrointestinal stromal tumors: a multi-center study[J]. Front Oncol, 2021, 11: 689136. doi: 10.3389/fonc.2021.689136
    [22] Xie ZH, Suo ST, Zhang W, et al. Prediction of high Ki-67 proliferation index of gastrointestinal stromal tumors based on CT at non-contrast-enhanced and different contrast-enhanced phases [J]. Eur Radiol, 2024, 34(4): 2223-32.
    [23] 李晶晶, 张梦琪, 刘焱. 能谱CT影像组学及CT征象对GIST危险度分级探讨[J]. 中国CT和MRI杂志, 2024, 22(7): 156-9.
    [24] Liang YM, Li XH, Li WM, et al. Prognostic significance of PTEN, Ki-67 and CD44s expression patterns in gastrointestinal stromal tumors[J]. World J Gastroenterol, 2012, 18(14): 1664-71. doi: 10.3748/wjg.v18.i14.1664
    [25] Zhang P, Tao KX. Pay attention to misdiagnosis and differential diagnosis of gastric gastrointestinal stromal tumor[J]. Chin J Gastrointest Surg, 2021, 24(9): 758-61.
    [26] Shibata T, Koyama K, Yamada H, et al. The association between the growth pattern and malignancy in the formation of ulceration in gastric gastrointestinal stromal tumor[J]. Intern Med, 2023, 62(17): 2451-5. doi: 10.2169/internalmedicine.0983-22
    [27] 杨采薇, 刘曦娇, 魏毅, 等. CT影像组学联合传统影像特征对胃肠道间质瘤Ki-67指数表达的预测价值[J]. 放射学实践, 2022, 37(9): 1068-73.
    [28] 李卫卫. CT影像组学在预测胃间质瘤KIT基因突变及Ki-67表达中的应用研究[D]. 郑州: 郑州大学, 2021.
    [29] Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis[J]. Eur Radiol Exp, 2018, 2(1): 36. doi: 10.1186/s41747-018-0068-z
    [30] 贾济波, 刘原庆, 冯飞文, 等. CT影像组学列线图模型预测胃肠道间质瘤Ki-67表达的临床研究[J]. 临床放射学杂志, 2023, 42(5): 783-8.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  17
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-26
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回