Relationship between vertebral artery dominance and basilar artery morphology and plaque characteristics: based on high-resolution vessel wall imaging
-
摘要:
目的 通过磁共振高分辨率血管壁成像(HR-VWI)研究椎动脉优势(VAD)与非VAD患者基底动脉的形态、斑块分布及强化方式的差异。 方法 回顾性分析2022年6月~2024年3月蚌埠医科大学第附属二医院行磁共振HR-MRI检查的100例患者的临床资料及基底动脉形态、斑块特征。采用三维时间飞跃法磁共振血管造影正位视图,将患者分为VAD组(n=77)和非VAD组(n=23);测量椎动脉直径及基底动脉的直径、长度、弯曲方向和弯曲程度等参数。利用HR-VWI图像分析斑块的分布及强化程度,计算狭窄程度、重构指数及斑块负荷。 结果 两组患者一般资料的差异无统计学意义(P>0.05)。两组间基底动脉的弯曲方向、弯曲程度及斑块的分布和强化程度差异均有统计学意义(P<0.05)。VAD组基底动脉多向右侧弯曲。VAD组基底动脉的弯曲程度1级和3级占比较大,而非VAD组则主要集中在0级。VAD组斑块横向分布多位于腹侧壁(P=0.010),纵向分布多为远端斑块(P=0.047)。VAD组中斑块2级强化的比例显著高于非VAD组(P<0.05)。 结论 HR-VWI作为一项无创性核磁共振技术,可以清晰地显示椎-基底动脉的几何状态、血管壁及动脉粥样硬化斑块,定性或定量评估斑块特征和血管的重构状况、狭窄率等;椎动脉优势显著影响基底动脉的弯曲方向、弯曲程度及斑块的分布和强化程度。 -
关键词:
- 椎动脉优势 /
- 基底动脉 /
- 磁共振高分辨率血管壁成像 /
- 斑块
Abstract:Objective To investigate differences in basilar artery morphology, plaque distribution, and enhancement patterns between vertebral artery dominance (VAD) and non-VAD patients using high-resolution vessel wall imaging (HR-VWI). Methods A retrospective analysis was conducted on clinical data and basilar artery morphology and plaque characteristics in 100 patients who underwent HR-MRI at the Second Affiliated Hospital of Bengbu Medical College from June 2022 to March 2024. Utilizing 3D time-of-flight magnetic resonance angiography, VAD group (n=77) and non-VAD group (n=23) were examined. Measurements included vertebral and basilar artery diameters, lengths, curvature direction, and degree. Plaque distribution and enhancement were analyzed using HR-VWI, calculating stenosis degree, remodeling index, and plaque burden. Results Clinical data showed no significant differences between the two groups (P>0.05). Significant differences were found in basilar artery curvature direction, degree, plaque distribution, and enhancement (P<0.05). In the VAD group, basilar artery curvature was predominantly rightward, with higher proportions of grade 1 and 3 curvature, while the non-VAD group mainly had grade 0 curvature. Plaque was more often distributed on the ventral wall (P=0.010) and distally (P=0.047) in the VAD group. Grade 2 plaque enhancement was significantly higher in the VAD group compared to the non-VAD group (P<0.05). Conclusion In VAD patients, the basilar artery predominantly curves to the right, with a higher proportion of moderate to severe curvature compared to non-VAD patients. Plaques in the basilar artery are more frequently located on the ventral wall and distally, with a more pronounced enhancement degree in VAD patients. Vertebral artery dominance significantly influences the direction and degree of basilar artery curvature, as well as plaque distribution and enhancement. -
图 1 在3D-TOF-MRA正位视图测量椎动脉、基底动脉直径及长度、基底动脉弯曲程度
Figure 1. Measurement of vertebral artery and basilar artery diameter and length and degree of basilar artery curvature in 3D-TOF-MRA upright view. A: For non-vertebral artery dominance patients, the diameter of the right vertebral artery was 0.19 cm, and the diameter of the left vertebral artery was 0.20 cm, while the diameter of the basilar artery was 2.34 cm; B: For vertebral artery dominance patients, there was severe bending of the basilar artery with a horizontal distance of 0.71 cm.
表 1 非VAD组与VAD组临床相关因素及实验室指标比较
Table 1. Comparison of clinical related factors and laboratory indicators between the non-VAD group and the VAD group
Factors Non-VAD group (n=23) VAD group (n=77) t/χ2/Z P Age (year, Mean±SD) 61±12 59±12 0.713 0.478 Gender [male, n(%)] 13(56.5) 57(74) 2.584 0.108 Smoking [n(%)] 4(17.4) 16(20.8) 0.127 0.722 Alcoholism [n(%)] 10(43.5) 38(49.4) 0.245 0.621 Hypertension [n(%)] 18(78.3) 63(81.8) 0.146 0.703 Diabetes mellitus [n(%)] 8(34.8) 39(50.6) 1.790 0.181 Total cholesterol (mmol /L, Mean±SD) 4.26±1.40 4.38±1.62 -0.302 0.764 Triglycerides (mmol/L, Mean±SD) 2.00±1.00 2.03±0.88 -0.156 0.876 High density lipoprotein (mmol/L, Mean±SD) 1.05±0.27 1.14±0.41 -0.997 0.321 Low density lipoprotein (mmol/L, Mean±SD) 2.31±1.16 2.45±1.28 -0.480 0.633 VA: Vertebral artery; BA: Basilar artery. 表 2 非VAD组与VAD组基底动脉形态学比较
Table 2. Comparison of basilar artery morphology between non-VAD group and VAD group
Items Non-VAD group (n=23) VAD group (n=77) t/χ2/Z P BA diameter (cm, Mean±SD) 0.30±0.06 0.31±0.07 -0.814 0.418 BA length (cm, Mean±SD) 2.40±0.35 2.58±0.47 -1.654 0.101 BA bending direction [n(%)] No bending 11(47.8) 4(5.2) Right side 9(39.1) 46(59.7) 25.688 <0.001 Left side 3(13.0) 27(35.1) BA bending degree [n(%)] Grade 0 18(78.3) 10(13.0) Grade 1 4(17.4) 30(39.0) Grade 2 0(0.0) 12(15.6) 38.343 <0.001 Grade 3 1(4.3) 25(32.5) VA type [n(%)] Type 1 21(91.3) 0(0.0) Type 2 0(0.0) 14(18.2) 89.054 <0.001 Type 3 2(8.7) 63(81.8) VA: Vertebral artery; BA: Basilar artery. 表 3 非VAD组与VAD组斑块基本特征比较
Table 3. Comparison of basic plaque characteristics between non-VAD group and VAD group
Plaque characteristics Non-VAD group (n=23) VAD group (n=77) t/χ2/Z P Reference level vascular area [mm2, M(P25, P75)] 20.24(15.16,23.26) 20.49(16.07.24.71) -0.692 0.489 Reference level lumen area (mm2, Mean±SD) 11.64±0.03 12.93±5.45 -1.087 0.280 Narrowest level vascular area (mm2, Mean±SD) 21.06±4.97 25.38±8.35 -2.355 0.020 Narrowest level lumen area (mm2, Mean±SD) 10.24±2.91 6.95±3.66 3.953 <0.001 Remodeling index (Mean±SD) 1.05±0.15 1.27±0.49 -2.028 0.045 Plaque burden (%, Mean±SD) 0.51±0.12 0.72±0.12 -7.649 <0.001 Stenosis rate (%, Mean±SD) 0.12±0.06 0.45±0.18 -8.503 <0.001 Maximum wall thickness (mm, Mean±SD) 2.00±0.62 1.95±0.53 0.366 0.715 表 4 非VAD组与VAD组斑块分布及强化程度比较
Table 4. Comparison of plaque distribution and enhancement degree between non-VAD group and VAD group [n(%)]
Items Non-VAD group (n=23) VAD group (n=77) t/χ2/Z P Longitudinal plaque distribution 6.573 0.010 Proximal 11(47.8) 16(20.8) Distal 12(52.2) 61(79.2) Transverse plaque distribution 7.970 0.047 Right side 7(30.4) 15(19.5) Ventral side 3(13.0) 32(41.6) Left side 4(17.4) 15(19.5) Dorsal side 9(39.1) 15(19.5) Enhancement pattern 9.756 0.008 Grade 0 10(43.5) 16(19.5) Grade 1 13(56.5) 43(55.8) Grade 2 0 19(24.7) Embryonic-type posterior cerebral artery 0.950 0.622 None 16(69.6) 48(62.3) Partial 4(17.4) 21(27.3) Complete 3(13.0) 8(10.4) -
[1] Wake-Buck AK, Gatenby JC, Gore JC. Hemodynamic characteris-tics of the vertebrobasilar system analyzed using MRI-based models[J]. PLoS One, 2012, 7(12): e51346. doi: 10.1371/journal.pone.0051346 [2] 隋莹, 孙佳莉, 陈悦, 等. 椎动脉优势与基底动脉斑块特征间的关系: 一项基于磁共振高分辨率血管壁成像技术的研究[J]. 中国脑血管病杂志, 2023, 20(4): 239-47. doi: 10.3969/j.issn.1672-5921.2023.04.004 [3] Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis[J]. Lab Invest, 2005, 85(1): 9-23. doi: 10.1038/labinvest.3700215 [4] Resnick N, Yahav H, Shay-Salit A, et al. Fluid shear stress and the vascular endothelium: for better and for worse[J]. Prog Biophys Mol Biol, 2003, 81(3): 177-99. doi: 10.1016/S0079-6107(02)00052-4 [5] Qtaish I, Ayasrah M, Qtaish NR. Retrospective cohort angiographic analysis of vertebral artery dominance, stenosis patterns, and demographic correlations[J]. Vasc Health Risk Manag, 2024, 20: 207-14. doi: 10.2147/VHRM.S453352 [6] Ngo MT, Kwak HS, Chung GH. Change in basilar artery length and bending according to aging and vertebral artery dominance: a longitudinal study[J]. Sci Rep, 2020, 10(1): 8904. doi: 10.1038/s41598-020-65682-x [7] 张丁月, 孙佳莉, 刘国强, 等. 基于高分辨MRI对轻、重度弯曲的基底动脉斑块特征的研究[J]. 磁共振成像, 2021, 12(11): 12-5, 36. [8] Sun Y, Shi YM, Xu P. The clinical research progress of vertebral artery dominance and posterior circulation ischemic stroke[J]. Cerebrovasc Dis, 2022, 51(5): 553-6. doi: 10.1159/000521616 [9] Huang LX, Wu XB, Liu YA, et al. High-resolution magnetic resonance vessel wall imaging in ischemic stroke and carotid artery atherosclerotic stenosis: a review[J]. Heliyon, 2024, 10(7): e27948. doi: 10.1016/j.heliyon.2024.e27948 [10] Li YC, Guo RC, Zhang XB, et al. Effect of dominant vertebral artery angle on basilar artery curvature and plaque[J]. Quant Imaging Med Surg, 2023, 13(9): 5748-58. doi: 10.21037/qims-23-74 [11] Zhu W, Wang YF, Dong XF, et al. Study on the correlation of vertebral artery dominance, basilar artery curvature and posterior circulation infarction[J]. Acta Neurol Belg, 2016, 116(3): 287-93. doi: 10.1007/s13760-015-0570-5 [12] Costa AF, Peral A, Bravo F, et al. Prevalence of basilar artery dolichoectasia in patients with acute ischemic stroke or transient ischemic attack in a single center of Spain[J]. Rev Neurol, 2024, 78 (10): 269-76. [13] Hong JM, Chung CS, Bang OY, et al. Vertebral artery dominance contributes to basilar artery curvature and peri-vertebrobasilar junctional infarcts[J]. J Neurol Neurosurg Psychiatry, 2009, 80 (10): 1087-92. doi: 10.1136/jnnp.2008.169805 [14] Otu E, Şen S, Örmeci T, et al. Association between vertebral artery dominance and basilar artery curvature in migraineurs: an anatomical magnetic resonance imaging study[J]. Neuroradiol J, 2024, 37(3): 314-22. doi: 10.1177/19714009231224444 [15] Bakalarz M, Rożniecki JJ, Stasiołek M. Clinical characteristics of patients with vertebral artery hypoplasia[J]. Int J Environ Res Public Health, 2022, 19(15): 9317. doi: 10.3390/ijerph19159317 [16] Katsanos AH, Kosmidou M, Kyritsis AP, et al. Is vertebral artery hypoplasia a predisposing factor for posterior circulation cerebral ischemic events? A comprehensive review[J]. Eur Neurol, 2013, 70(1/2): 78-83. [17] Caplan LR. Arterial occlusions: does size matter?[J]. J Neurol Neurosurg Psychiatry, 2007, 78(9): 916. doi: 10.1136/jnnp.2006.110205 [18] Kim BJ, Kim SM, Kang DW, et al. Vascular tortuosity may be related to intracranial artery atherosclerosis[J]. Int J Stroke, 2015, 10(7): 1081-6. doi: 10.1111/ijs.12525 [19] 刘昱琳, 刘红军, 李品雄, 等. 高分辨率MRI分析基底动脉几何形态与其动脉粥样硬化斑块的相关性[J]. 中国医学影像技术, 2022, 38(8): 1145-50. [20] Yu J, Li ML, Xu YY, et al. Plaque distribution of low-grade basilar artery atherosclerosis and its clinical relevance[J]. BMC Neurol, 2017, 17(1): 8. doi: 10.1186/s12883-016-0785-y [21] Chen ZS, Liu AF, Chen HJ, et al. Evaluation of basilar artery atherosclerotic plaque distribution by 3D MR vessel wall imaging[J]. J Magn Reson Imaging, 2016, 44(6): 1592-9. doi: 10.1002/jmri.25296 [22] Chen WW, Song XW, Wei HY, et al. Variations of arterial compliance and vascular resistance due to plaque or infarct in a single vascular territory of the middle cerebral artery[J]. Quant Imaging Med Surg, 2023, 13(12): 7802-13. doi: 10.21037/qims-23-222 [23] Kang DW, Kim DY, Kim J, et al. Emerging concept of intracranial arterial diseases: the role of high resolution vessel wall MRI[J]. J Stroke, 2024, 26(1): 26-40. doi: 10.5853/jos.2023.02481 [24] Ouyang F, Liu J, Wu Q, et al. Relationship between the intravascular enhancement sign on three-dimensional T1-weighted turbo spin echo and intraluminal thrombus in middle cerebral artery atherosclerosis[J]. Eur J Radiol, 2024, 176: 111495. doi: 10.1016/j.ejrad.2024.111495 [25] Cheng XQ, Liu J, Li HX, et al. Incremental value of enhanced plaque length for identifying intracranial atherosclerotic culprit plaques: a high-resolution magnetic resonance imaging study[J]. Insights Imaging, 2023, 14(1): 99. doi: 10.1186/s13244-023-01449-y [26] 王秀萍, 王平翻, 李豪鹏, 等. 高分辨磁共振扫描对急性脑梗死患者大脑中动脉血管壁斑块特征分析的应用[J]. 中国CT和MRI杂志, 2024, 22(3): 32-4. doi: 10.3969/j.issn.1672-5131.2024.03.010 [27] 张雨晴, 金海洋, 李奎. 探讨能谱计算机断层(CT)联合磁共振(MR)高分辨率管壁成像(HR-VWI)对颈动脉斑块成分的评估价值[J]. 中国CT和MRI杂志, 2023, 21(9): 55-7. doi: 10.3969/j.issn.1672-5131.2023.09.019 [28] Yu CY, Li Y, Xiao YY, et al. Characterization of posterior circulation blood perfusion in patients with different degrees of basilar artery tortuosity[J]. Neurol Sci, 2024, 45(11): 5337-45. doi: 10.1007/s10072-024-07591-9 [29] Lu YC, Wang C, Bao YF, et al. Association between intracranial aneurysm wall enhancement and intracranial atherosclerotic plaque: a cross-sectional study using high-resolution vessel wall imaging[J]. Quant Imaging Med Surg, 2024, 14(2): 1553-63. doi: 10.21037/qims-23-1025 [30] Valenzuela-Fuenzalida JJ, Rojas-Navia CP, Quirós-Clavero AP, et al. Anatomy of vertebral artery hypoplasia and its relationship with clinical implications: a systematic review and meta-analysis of prevalence[J]. Surg Radiol Anat, 2024, 46(7): 963-75. doi: 10.1007/s00276-024-03377-y