Identification of circulating tumour cells in nasopharyngeal carcinoma based on microconfocal Raman spectroscopy with multi-target aptamer microfluidics
-
摘要:
目的 建立一种基于显微共聚焦拉曼光谱技术的鼻咽癌循环肿瘤细胞鉴定方法,实现对鼻咽癌循环肿瘤细胞的无接触、无标记检测。 方法 体外培养人T淋巴细胞白血病细胞株Jurkat和鼻咽癌细胞株Sune1,利用EpCAM、CD44、EGFR和波形蛋白适配体组装的纳米微流控芯片技术识别和亲和捕获单细胞,并使用显微共聚焦拉曼光谱技术对单细胞进行鉴定,得到单细胞拉曼光谱。以两种机器学习算法:支持向量机和线性判别分析构建分类器,对单细胞拉曼光谱进行建模分析。 结果 共采集得到474个Jurkat细胞与Sune1细胞的单细胞拉曼光谱,其峰位分析结果显示:与Jurkat细胞相比,Sune1细胞中的腺嘌呤、胸腺嘧啶和鸟嘌呤含量显著下降(P<0.0001);羟脯氨酸、蛋白质和脂类的含量显著上升(P<0.0001),差异有统计学意义。线性判别分析的预测准确率较高,能够有效区分两种细胞,预测准确率高达98.31%。 结论 本研究基于显微共聚焦拉曼光谱技术和机器学习算法,建立了一种可能适用于鉴定鼻咽癌循环肿瘤细胞的方法,可对鼻咽癌的临床微创诊断产生积极作用。 Abstract:Objective To establish a method for the identification of nasopharyngeal carcinoma circulating tumor cells based on microconfocal Raman spectroscopy, in order to realize the non-contact and marker-free detection of nasopharyngeal carcinoma circulating tumor cells. Methods Human T lymphocytic leukemia cell line Jurkat and nasopharyngeal carcinoma cell line Sune1 were cultured in vitro, and single cells were identified and affinity captured by nanomicronic chip technology assembled by EpCAM, CD44, EGFR and vimentin aptamer. The single cells were identified by microconfocal Raman spectroscopy to obtain single cell Raman spectroscopy. Two machine learning algorithms, support vector machine and linear discriminant analysis, were used to construct a classifier to model and analyze single-cell Raman spectra. Results Single-cell Raman spectra of 474 Jurkat cells and Sune1 cells were collected. Peak location analysis results showed that the contents of adenine, thymine and guanine in Sune1 cells decreased significantly compared with Jurkat cells. The contents of hydroxyproline, protein and lipids increased significantly, and the differences were statistically significant. Linear discriminant analysis had a high prediction accuracy, which could effectively distinguish the two types of cells, and the prediction accuracy was as high as 98.31%. Conclusion Based on microconfocal Raman spectroscopy and machine learning algorithms, this study established a method that may be suitable for the identification of nasopharyngeal carcinoma circulating tumor cells, which has a positive effect on the clinical minimally invasive diagnosis of nasopharyngeal carcinoma. -
表 1 拉曼波数的生物学归属
Table 1. Biological assignment of Raman wavenumbers
Raman wavenumber (cm-1) Biomolecule assignment 730 Adenosine ring respiration 752 v15 (Porphyrin respiration) 784 Phosphodiester; Cytosine 830 Polyhydroxybutyrate 853 Tyrosine cyclic respiratory mode and Proline cyclic C-C stretching 876 v (Carbon-Carbon), Hydroxyproline (Protein partitioning) 957 Hydroxyapatite/Carotenoids/Cholesterol 1003 Phenylalanine, Carbon-Carbon skeleton 1030 Collagen with phenylalanine 1094 Deoxyribonucleic acid 1126 Lipid acyl backbone (Trans conformation) 1340 Nucleotide 1375 Thymine, Adenine, Guanine 1446 CH2 bending of proteins and Lipids 1487 Guanine 1576 Nucleotide 1655 Amide Ⅰ (Protein C=O stretching mode, α-helical conformation)/C= C lipid stretching 表 2 LDA模型区分Jurkat细胞和Sune1细胞
Table 2. LDA model distinguishes between Jurkat and Sune1 cells
LDA Reference Jurkat Sune1 Jurkat(n) 70 0 Sune1(n) 1 47 Sensitivity (%) 98.59 - Specificity (%) - 100.00 表 3 Jurkat细胞和Sune1细胞的特征拉曼峰
Table 3. Characteristic Raman peaks of Jurkat cells and Sune1 cells
Wave number(cm-1) Molecular vibration Jurkat cell Sune1 cell Biological significance 730 Adenine respiration High Low It is related to the nucleic acid content. 1375 Lipid CH2 bending High Low It is related to the lipid composition of the cell membrane. 784 Respiration by guanine High Low It is related to the nucleic acid content. 1446 Lipid CH2 bending Low High It may be related to changes in lipid composition. 876 Carbohydrates or amino acids Low High It may be related to glycosylation or protein structure changes. 1655 C=O stretching vibration (alpha helix) Low High It may be related to protein secondary structure changes. -
[1] 薛飞, 张婷, 王锐, 等. 鼻咽癌的临床特征及诊断治疗进展[J]. 医学研究生学报, 2022, 35(11): 1213-8. [2] Bruce JP, To KF, Lui VWY, et al. Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in inflammatory NF-κB activation and immune escape[J]. Nat Commun, 2021, 12(1): 4193. doi: 10.1038/s41467-021-24348-6 [3] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0 [4] Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, et al. Recurrent/metastatic nasopharyngeal carcinoma treatment from present to future: where are we and where are we heading?[J]. Curr Treat Options Oncol, 2023, 24(9): 1138-66. doi: 10.1007/s11864-023-01101-3 [5] Zhang YM, Gong GZ, Qiu QT, et al. Radiomics for diagnosis and radiotherapy of nasopharyngeal carcinoma[J]. Front Oncol, 2021, 11: 767134. [6] Liu WX, Chen G, Gong X, et al. The diagnostic value of EBVDNA and EBV-related antibodies detection for nasopharyngeal carcinoma: a meta-analysis[J]. Cancer Cell Int, 2021, 21(1): 164. doi: 10.1186/s12935-021-01862-7 [7] Wang HP, Ma HZ, Fang PP, et al. Dynamic confocal Raman spectroscopy of flowing blood in bionic blood vessel[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 259: 119890. doi: 10.1016/j.saa.2021.119890 [8] Gomes da Costa S, Richter A, Schmidt U, et al. Confocal Raman microscopy in life sciences[J]. Morphologie, 2019, 103(341): 11-6. doi: 10.1016/j.morpho.2018.12.003 [9] Hanna K, Krzoska E, Shaaban AM, et al. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects[J]. Br J Cancer, 2022, 126: 1125-39. doi: 10.1038/s41416-021-01659-5 [10] Kanmalar M, Abdul Sani SF, Kamri NINB, et al. Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: a review[J]. Cell Mol Biol Lett, 2022, 27(1): 9. doi: 10.1186/s11658-022-00307-x [11] Auner GW, Koya SK, Huang CH, et al. Applications of Raman spectroscopy in cancer diagnosis[J]. Cancer Metastasis Rev, 2018, 37(4): 691-717. doi: 10.1007/s10555-018-9770-9 [12] Li M, Liu D, Zhang J, et al. Aptamer-cocktail functionalized nanomicrofluidic chip for enhancing isolation and characterization of circulating cancer cells[J]. Anticancer Res, 2022, 42(9): 4345-58. doi: 10.21873/anticanres.15935 [13] Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research[J]. Nat Rev Cancer, 2014, 14(9): 623-31. doi: 10.1038/nrc3820 [14] Lin DF, Shen LS, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. doi: 10.1038/s41392-021-00817-8 [15] Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: a critical review[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188436. doi: 10.1016/j.bbcan.2020.188436 [16] Chen C, Zhao SJ, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5 [17] Lin J, Zheng JP, Wu AG. An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy[J]. J Mater Chem B, 2020, 8(16): 3316-26. doi: 10.1039/C9TB02327E [18] Noorani L, Stenzel M, Liang R, et al. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model[J]. J Nanobiotechnology, 2015, 13: 25. doi: 10.1186/s12951-015-0082-8 [19] Huang HM, Li SS, Tang QL, et al. Metabolic reprogramming and immune evasion in nasopharyngeal carcinoma[J]. Front Immunol, 2021, 12: 680955. doi: 10.3389/fimmu.2021.680955 [20] Sobanski T, Rose M, Suraweera A, et al. Cell metabolism and DNA repair pathways: implications for cancer therapy[J]. Front Cell Dev Biol, 2021, 9: 633305. doi: 10.3389/fcell.2021.633305 [21] Lieu EL, Nguyen T, Rhyne S, et al. Amino acids in cancer[J]. Exp Mol Med, 2020, 52: 15-30. doi: 10.1038/s12276-020-0375-3 [22] Tang P, Cheng WD, He XM, et al. Raman spectrum spectral imaging revealing the molecular mechanism of Berberine-induced Jurkat cell apoptosis and the receptor-mediated Berberine delivery system[J]. Biomed Opt Express, 2019, 10(4): 1581-600. doi: 10.1364/BOE.10.001581 [23] Zheng SX, Matskova L, Zhou XY, et al. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma [J]. Mol Oncol, 2020, 14(12): 3234-52. doi: 10.1002/1878-0261.12824 [24] Kopec M, Imiela A, Abramczyk H. Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging[J]. Sci Rep, 2019, 9(1): 166. doi: 10.1038/s41598-018-36622-7 [25] Li SX, Chen QY, Zhang YJ, et al. Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique[J]. J Biomed Opt, 2012, 17(12): 125003. doi: 10.1117/1.JBO.17.12.125003 [26] Xu JB, Chen DY, Wu W, et al. A metabolic map and artificial intelligence-aided identification of nasopharyngeal carcinoma via a single-cell Raman platform[J]. Br J Cancer, 2024, 130(10): 1635-46. doi: 10.1038/s41416-024-02637-3 [27] Smit DJ, Pantel K. Circulating tumor cells as liquid biopsy markers in cancer patients[J]. Mol Aspects Med, 2024, 96: 101258. doi: 10.1016/j.mam.2024.101258