留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于显微共聚焦拉曼光谱与多靶标适配体微流控技术鉴定鼻咽癌循环肿瘤细胞的方法

吴紫曼 郭非凡 武薇 豆小文 李健 张秀明 熊丹

吴紫曼, 郭非凡, 武薇, 豆小文, 李健, 张秀明, 熊丹. 基于显微共聚焦拉曼光谱与多靶标适配体微流控技术鉴定鼻咽癌循环肿瘤细胞的方法[J]. 分子影像学杂志, 2024, 47(10): 1030-1037. doi: 10.12122/j.issn.1674-4500.2024.10.02
引用本文: 吴紫曼, 郭非凡, 武薇, 豆小文, 李健, 张秀明, 熊丹. 基于显微共聚焦拉曼光谱与多靶标适配体微流控技术鉴定鼻咽癌循环肿瘤细胞的方法[J]. 分子影像学杂志, 2024, 47(10): 1030-1037. doi: 10.12122/j.issn.1674-4500.2024.10.02
WU Ziman, GUO Feifan, WU Wei, DOU Xiaowen, LI Jian, ZHANG Xiuming, XIONG Dan. Identification of circulating tumour cells in nasopharyngeal carcinoma based on microconfocal Raman spectroscopy with multi-target aptamer microfluidics[J]. Journal of Molecular Imaging, 2024, 47(10): 1030-1037. doi: 10.12122/j.issn.1674-4500.2024.10.02
Citation: WU Ziman, GUO Feifan, WU Wei, DOU Xiaowen, LI Jian, ZHANG Xiuming, XIONG Dan. Identification of circulating tumour cells in nasopharyngeal carcinoma based on microconfocal Raman spectroscopy with multi-target aptamer microfluidics[J]. Journal of Molecular Imaging, 2024, 47(10): 1030-1037. doi: 10.12122/j.issn.1674-4500.2024.10.02

基于显微共聚焦拉曼光谱与多靶标适配体微流控技术鉴定鼻咽癌循环肿瘤细胞的方法

doi: 10.12122/j.issn.1674-4500.2024.10.02
基金项目: 

深圳市基础研究自由探索项目 JCYJ20230807142806014

深圳市医学重点学科建设经费 SZXK054

详细信息
    作者简介:

    吴紫曼,在读硕士研究生,E-mail: 245294824@qq.com

    通讯作者:

    熊丹,硕士生导师,E-mail: sunny543@126.com

Identification of circulating tumour cells in nasopharyngeal carcinoma based on microconfocal Raman spectroscopy with multi-target aptamer microfluidics

  • 摘要:   目的  建立一种基于显微共聚焦拉曼光谱技术的鼻咽癌循环肿瘤细胞鉴定方法,实现对鼻咽癌循环肿瘤细胞的无接触、无标记检测。  方法  体外培养人T淋巴细胞白血病细胞株Jurkat和鼻咽癌细胞株Sune1,利用EpCAM、CD44、EGFR和波形蛋白适配体组装的纳米微流控芯片技术识别和亲和捕获单细胞,并使用显微共聚焦拉曼光谱技术对单细胞进行鉴定,得到单细胞拉曼光谱。以两种机器学习算法:支持向量机和线性判别分析构建分类器,对单细胞拉曼光谱进行建模分析。  结果  共采集得到474个Jurkat细胞与Sune1细胞的单细胞拉曼光谱,其峰位分析结果显示:与Jurkat细胞相比,Sune1细胞中的腺嘌呤、胸腺嘧啶和鸟嘌呤含量显著下降(P<0.0001);羟脯氨酸、蛋白质和脂类的含量显著上升(P<0.0001),差异有统计学意义。线性判别分析的预测准确率较高,能够有效区分两种细胞,预测准确率高达98.31%。  结论  本研究基于显微共聚焦拉曼光谱技术和机器学习算法,建立了一种可能适用于鉴定鼻咽癌循环肿瘤细胞的方法,可对鼻咽癌的临床微创诊断产生积极作用。

     

  • 图  1  实验流程图

    Figure  1.  Experimental flowchart.

    图  2  外周血模拟样本的鼻咽癌CTCs分离鉴定(×40)

    Figure  2.  Isolation and identification of nasopharyngeal carcinoma CTCs in simulated peripheral blood samples(×40).

    图  3  装置分选结果的免疫荧光鉴别(×20)

    Figure  3.  Immunofluorescence identification of device sorting results(×20).

    图  4  Jurkat和Sune1两种细胞系PCA分析图

    Figure  4.  Plot of PCA analysis of two cell lines, Jurkat and Sune1.

    图  5  Jurkat细胞和Sune1细胞拉曼差异峰谱及生物标志物拉曼差异峰谱定量比较

    Figure  5.  Quantitative comparison of Raman difference peak spectra(A) and biomarker Raman difference peak spectra of Jurkat and Sune1 cells(B-G). ****P<0.0001.

    表  1  拉曼波数的生物学归属

    Table  1.   Biological assignment of Raman wavenumbers

    Raman wavenumber (cm-1) Biomolecule assignment
    730 Adenosine ring respiration
    752 v15 (Porphyrin respiration)
    784 Phosphodiester; Cytosine
    830 Polyhydroxybutyrate
    853 Tyrosine cyclic respiratory mode and Proline cyclic C-C stretching
    876 v (Carbon-Carbon), Hydroxyproline (Protein partitioning)
    957 Hydroxyapatite/Carotenoids/Cholesterol
    1003 Phenylalanine, Carbon-Carbon skeleton
    1030 Collagen with phenylalanine
    1094 Deoxyribonucleic acid
    1126 Lipid acyl backbone (Trans conformation)
    1340 Nucleotide
    1375 Thymine, Adenine, Guanine
    1446 CH2 bending of proteins and Lipids
    1487 Guanine
    1576 Nucleotide
    1655 Amide Ⅰ (Protein C=O stretching mode, α-helical conformation)/C= C lipid stretching
    下载: 导出CSV

    表  2  LDA模型区分Jurkat细胞和Sune1细胞

    Table  2.   LDA model distinguishes between Jurkat and Sune1 cells

    LDA Reference
    Jurkat Sune1
    Jurkat(n) 70 0
    Sune1(n) 1 47
    Sensitivity (%) 98.59 -
    Specificity (%) - 100.00
    下载: 导出CSV

    表  3  Jurkat细胞和Sune1细胞的特征拉曼峰

    Table  3.   Characteristic Raman peaks of Jurkat cells and Sune1 cells

    Wave number(cm-1) Molecular vibration Jurkat cell Sune1 cell Biological significance
    730 Adenine respiration High Low It is related to the nucleic acid content.
    1375 Lipid CH2 bending High Low It is related to the lipid composition of the cell membrane.
    784 Respiration by guanine High Low It is related to the nucleic acid content.
    1446 Lipid CH2 bending Low High It may be related to changes in lipid composition.
    876 Carbohydrates or amino acids Low High It may be related to glycosylation or protein structure changes.
    1655 C=O stretching vibration (alpha helix) Low High It may be related to protein secondary structure changes.
    下载: 导出CSV
  • [1] 薛飞, 张婷, 王锐, 等. 鼻咽癌的临床特征及诊断治疗进展[J]. 医学研究生学报, 2022, 35(11): 1213-8.
    [2] Bruce JP, To KF, Lui VWY, et al. Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in inflammatory NF-κB activation and immune escape[J]. Nat Commun, 2021, 12(1): 4193. doi: 10.1038/s41467-021-24348-6
    [3] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0
    [4] Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, et al. Recurrent/metastatic nasopharyngeal carcinoma treatment from present to future: where are we and where are we heading?[J]. Curr Treat Options Oncol, 2023, 24(9): 1138-66. doi: 10.1007/s11864-023-01101-3
    [5] Zhang YM, Gong GZ, Qiu QT, et al. Radiomics for diagnosis and radiotherapy of nasopharyngeal carcinoma[J]. Front Oncol, 2021, 11: 767134.
    [6] Liu WX, Chen G, Gong X, et al. The diagnostic value of EBVDNA and EBV-related antibodies detection for nasopharyngeal carcinoma: a meta-analysis[J]. Cancer Cell Int, 2021, 21(1): 164. doi: 10.1186/s12935-021-01862-7
    [7] Wang HP, Ma HZ, Fang PP, et al. Dynamic confocal Raman spectroscopy of flowing blood in bionic blood vessel[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 259: 119890. doi: 10.1016/j.saa.2021.119890
    [8] Gomes da Costa S, Richter A, Schmidt U, et al. Confocal Raman microscopy in life sciences[J]. Morphologie, 2019, 103(341): 11-6. doi: 10.1016/j.morpho.2018.12.003
    [9] Hanna K, Krzoska E, Shaaban AM, et al. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects[J]. Br J Cancer, 2022, 126: 1125-39. doi: 10.1038/s41416-021-01659-5
    [10] Kanmalar M, Abdul Sani SF, Kamri NINB, et al. Raman spectroscopy biochemical characterisation of bladder cancer cisplatin resistance regulated by FDFT1: a review[J]. Cell Mol Biol Lett, 2022, 27(1): 9. doi: 10.1186/s11658-022-00307-x
    [11] Auner GW, Koya SK, Huang CH, et al. Applications of Raman spectroscopy in cancer diagnosis[J]. Cancer Metastasis Rev, 2018, 37(4): 691-717. doi: 10.1007/s10555-018-9770-9
    [12] Li M, Liu D, Zhang J, et al. Aptamer-cocktail functionalized nanomicrofluidic chip for enhancing isolation and characterization of circulating cancer cells[J]. Anticancer Res, 2022, 42(9): 4345-58. doi: 10.21873/anticanres.15935
    [13] Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research[J]. Nat Rev Cancer, 2014, 14(9): 623-31. doi: 10.1038/nrc3820
    [14] Lin DF, Shen LS, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. doi: 10.1038/s41392-021-00817-8
    [15] Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: a critical review[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188436. doi: 10.1016/j.bbcan.2020.188436
    [16] Chen C, Zhao SJ, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
    [17] Lin J, Zheng JP, Wu AG. An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy[J]. J Mater Chem B, 2020, 8(16): 3316-26. doi: 10.1039/C9TB02327E
    [18] Noorani L, Stenzel M, Liang R, et al. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model[J]. J Nanobiotechnology, 2015, 13: 25. doi: 10.1186/s12951-015-0082-8
    [19] Huang HM, Li SS, Tang QL, et al. Metabolic reprogramming and immune evasion in nasopharyngeal carcinoma[J]. Front Immunol, 2021, 12: 680955. doi: 10.3389/fimmu.2021.680955
    [20] Sobanski T, Rose M, Suraweera A, et al. Cell metabolism and DNA repair pathways: implications for cancer therapy[J]. Front Cell Dev Biol, 2021, 9: 633305. doi: 10.3389/fcell.2021.633305
    [21] Lieu EL, Nguyen T, Rhyne S, et al. Amino acids in cancer[J]. Exp Mol Med, 2020, 52: 15-30. doi: 10.1038/s12276-020-0375-3
    [22] Tang P, Cheng WD, He XM, et al. Raman spectrum spectral imaging revealing the molecular mechanism of Berberine-induced Jurkat cell apoptosis and the receptor-mediated Berberine delivery system[J]. Biomed Opt Express, 2019, 10(4): 1581-600. doi: 10.1364/BOE.10.001581
    [23] Zheng SX, Matskova L, Zhou XY, et al. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma [J]. Mol Oncol, 2020, 14(12): 3234-52. doi: 10.1002/1878-0261.12824
    [24] Kopec M, Imiela A, Abramczyk H. Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging[J]. Sci Rep, 2019, 9(1): 166. doi: 10.1038/s41598-018-36622-7
    [25] Li SX, Chen QY, Zhang YJ, et al. Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique[J]. J Biomed Opt, 2012, 17(12): 125003. doi: 10.1117/1.JBO.17.12.125003
    [26] Xu JB, Chen DY, Wu W, et al. A metabolic map and artificial intelligence-aided identification of nasopharyngeal carcinoma via a single-cell Raman platform[J]. Br J Cancer, 2024, 130(10): 1635-46. doi: 10.1038/s41416-024-02637-3
    [27] Smit DJ, Pantel K. Circulating tumor cells as liquid biopsy markers in cancer patients[J]. Mol Aspects Med, 2024, 96: 101258. doi: 10.1016/j.mam.2024.101258
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-10-20

目录

    /

    返回文章
    返回