Early paradoxical motion under cardiac magnetic resonance can be used to evaluate postoperative cardiac function in patients with acute myocardial infarction from multiple angles
-
摘要:
目的 探讨心脏磁共振(CMR)早期矛盾运动与急性心肌梗死(AMI)患者临床特征、危险分层和临床预后的相关性。 方法 连续纳入2022年6月~2024年4月在我科住院并确诊的首发AMI患者77例,其中男性53例,女性24例,年龄61.75±11.92岁。所有患者均在入院后行罪犯血管血运重建术,并在术后平均1周内行CMR检查。根据心肌应变是否出现矛盾运动,将其分为矛盾运动组(n=47)和非矛盾运动组(n=30)。所有患者平均随访7月,统计主要不良心血管事件(MACEs)的发生。 结果 矛盾运动组患者的脑钠肽、中性粒细胞/淋巴细胞比值高于非矛盾运动组,淋巴细胞计数低于非矛盾运动组(P<0.05)。两组病变支数、罪犯血管、Gensini评分的差异无统计学意义(P>0.05)。CMR结果显示,矛盾运动组患者的梗死面积、左室收缩末期容积指数、微循环障碍容积高于非矛盾运动组(P<0.05),而左房射血分数、左室射血分数、梗死节段径向应变、梗死节段周向应变、梗死节段纵向应变、整体径向应变、整体周向应变、整体纵向应变均低于非矛盾运动组(P<0.05)。二元Logistic回归显示,中性粒细胞/淋巴细胞比值、梗死节段周向应变、整体纵向应变可以独立预测患者是否出现心肌矛盾运动。在矛盾运动组患者中,MACEs事件发生率高于非矛盾运动组(P<0.05),其中矛盾运动是AMI患者在接受成功血运重建后发生MACEs事件的独立危险因素(HR=2.551)。 结论 CMR可以多角度评估AMI术后心功能状态,为患者个体化治疗、改善临床预后提供了重要的参考依据。 Abstract:Objective To explore correlations of early contradictory movements with clinical characteristics, risk stratification, and clinical prognosis in patients with acute myocardial infarction (AMI). Methods This study consecutively enrolled 77 first-onset AMI patients who were hospitalized and diagnosed in our department from June 2022 to April 2024, including 53 males and 24 females, with a mean age of 61.75±11.92 years. All patients underwent culprit-only revascularization after admission and received cardiac magnetic resonance (CMR) imaging within an average of one week after surgery. According to whether there were contradictory movements in myocardial strain, the included patients were divided into contradictory movement group (n=47) and non-contradictory movement group (n=30). All patients were followed up for an average of 7 months to record the occurrence of major adverse cardiovascular events (MACEs). Results Patients in the contradictory movement group had significantly increased brain natriuretic peptide levels and neutrophil/lymphocyte ratio, but decreased lymphocyte counts than those in the non-contradictory movement group (P<0.05). There was no significant difference in the number of diseased vessels, culprit vessels, and Gensini score between the contradictory movement group and the non-contradictory movement group (P>0.05). CMR results showed that patients in the contradictory movement group had significantly larger infarct areas visualized by LGE, higher left ventricular end-systolic volume index and microcirculation dysfunction volume than those in the non-contradictory movement group (P<0.05); while the former group had obviously lower left atrial ejection fraction, left ventricular ejection fraction, radial strain of the infarcted segment, circumferential strain of the infarcted segment, longitudinal strain of the infarcted segment, global radial strain, global circumferential strain, and global longitudinal strain than those in the latter group (P<0.05). Furthermore, binary logistic regression analysis showed that neutrophil/lymphocyte ratio, circumferential strain of the infarcted segment, and global longitudinal strain could predict whether patients had contradictory movements independently. In addition, the incidence of MACEs was significantly higher in the contradictory movement group than in the non-contradictory movement group (P<0.05), with contradictory movement being an independent risk factor for MACEs in AMI patients after successful revascularization (HR=2.551). Conclusion CMR can facilitate the evaluation of the postoperative cardiac function status of AMI patients from multiple perspectives, which may provide a valuable reference for applying personalized treatment and improving the clinical prognosis of patients. -
表 1 2组AMI患者基线特征的比较
Table 1. Comparison of baseline characteristics between the two groups of acute myocardial infarction patients
Index Non-contradictory movement group (n=30) Contradictory movement group (n=47) P Age (year) 58.5±11.75 63.83±11.69 0.055 Male [n(%)] 21(70) 32(68.1) 0.860 BMI (kg/m2) 24.35±4.01 25.24±3.82 0.334 Hypertension [n(%)] 14(46.7) 28(59.6) 0.267 Diabetes mellitus [n(%)] 8(26.7) 13(27.7) 0.924 Previous stroke [n(%)] 3(10) 6(12.8) 0.996 Atrial fibrillation [n(%)] 1(3.3) 4(8.5) 0.671 Smoker [n(%)] 22(73.3) 26(55.3) 0.112 Glucose (mmol/L) 6.27(5.38, 7.47) 6.7(5.22, 8.62) 0.372 Uric acid (μmol/L) 304(257.75, 364.5) 322(253, 392) 0.506 Serum creatinine (μmol/L) 66.77±18.56 68.82±26.83 0.716 Total cholesterol (mmol/L) 4.44±1.57 4.78±1.41 0.331 Triglycerides (mmol/L) 1.55(0.9, 2.9) 1.42(0.97, 2.19) 0.555 Low-density lipoprotein cholesterol (mmol/L) 2.7(2, 3.21) 2.89(2.29, 3.58) 0.092 High-density lipoprotein cholesterol (mmol/L) 1.01(0.87, 1.19) 1.05(0.95, 1.32) 0.185 Lipoprotein(a) (mg/L) 196.5(68, 420.75) 220.5(107, 433.5) 0.577 Cardiac troponin Ⅰ (μg/L) 10.31(3.13, 26.9) 10.2(1.69, 34.2) 0.691 Creatine kinase-MB (U/L) 50(27.5, 90.25) 40(23, 113) 0.826 BNP (ng/L) 114(30.7, 336) 520(145, 1190) 0.002 White blood cell (×109/L) 9.42(8.17, 10.9) 10.12(8.79, 12) 0.186 Neutrophil (×109/L) 7.58±2.76 8.42±2.53 0.172 Monocyte (×109/L) 0.5(0.33, 0.65) 0.51(0.32, 0.61) 0.703 Lymphocyte (×109/L) 1.62(1.24, 2.54) 1.38(0.98, 1.56) 0.013 Platelet (×109/L) 205.03±50.7 210.83±55.34 0.645 Mean platelet volume (fL) 10.85±1.02 11.05±0.99 0.394 Platelet distribution width (%) 16(13.95, 16.4) 16.2(15.7, 16.4) 0.419 Mean corpuscular volume (fL) 90.7(87.6, 92.63) 90.3(88, 93.7) 0.834 NLR 4.9±3.01 6.99±3.73 0.012 PLR 126.01(76.99, 184.11) 142.67(109.84, 197) 0.074 Total bilirubin(μmol/L) 14.6±5.02 13.13±6.93 0.319 Fibrinogen (g/L) 2.76(2.35, 3.62) 2.91(2.56, 3.39) 0.592 Time of presentation (h) 4(3, 7) 5(3, 8) 0.235 TIMI score [n(%)] 0.247 Low risk 16(53.3) 17(36.2) Intermediate risk 11(36.7) 20(42.6) High risk 3(10) 10(21.3) BNP: B-type natriuretic peptide; NLR: Neutrophil-to-lymphocyte ratio; PLR: Platelet-to-lymphocyte ratio. 表 2 2组AMI患者手术情况的比较
Table 2. Comparison of surgical conditions in two groups of acute myocardial infarction patients
Index Non-contradictory movement group (n=30) Contradictory movement group (n=47) P Nember of diseased branches [n(%)] 0.423 Single vessel 6(20.0) 6(12.8) Two blood vessels 8(26.7) 9(19.1) Three blood vessels 16(53.3) 32(68.1) Culprit vessel [n(%)] 0.329 Left anterior descending coronary artery 13(43.3) 24(51.1) Left circumflex coronary artery 1(3.3) 5(10.6) Right coronary artery 16(53.3) 18(38.3) Gensini score 83(49.5, 140.5) 104(64, 148) 0.303 表 3 2组AMI患者CMR参数的比较
Table 3. Comparison of CMR parameters in two groups of patients with acute myocardial infarction
Index Non-contradictory movement group (n=30) Contradictory movement group (n=47) P LAEF (%) 57.5(51, 64) 53(44, 59) 0.031 LVEF (%) 54(51, 61) 45(35, 52) <0.001 LGE% 13.24(9.84, 20.38) 18.06(14.96, 26.53) 0.004 LVEDVi (mL/m2) 67.54±16.33 75.33±17.44 0.054 LVESVi (mL/m2) 29.24(22.83, 37.22) 40.17(30.27, 51.74) <0.001 Myocardial mass(g) 92.27±23.01 101±22.78 0.106 MMI (g/m2) 1.27(1.17, 1.65) 1.31(1.11, 1.66) 0.871 MVO [n(%)] 14(46.7) 30(63.8) 0.138 MVO volume (mL) 1.53(0.48, 2.95) 2.97(1.73, 5.61) 0.006 Myocardial strain in infarct segment (%) Radial strain 20.62(13.43, 24.6) 14.61(11.63, 20.1) 0.017 Circumferential strain 13.34(11.39, 16.3) 10.05(8.93, 12.62) <0.001 Longitudinal strain 12.99±3.16 10.32±3.38 0.001 Global myocardial strain (%) Radial strain 29.2(25.54, 34.82) 25.23(21.08, 31.71) 0.019 Circumferential strain 17.15±2.15 14.25±3.3 <0.001 Longitudinal strain 13.53±3.15 10.46±3.14 <0.001 LAEF: Left atrial ejection fraction; LVEF: Left ventricular ejection fraction; LGE%: Late gadolinium enhancement percentage; LVEDVi: Left ventricular end-diastolic volume index; LVESVi: Left ventricular end-systolic volume index; LVEDV: Left ventricular end-diastolic volume; LVESV: Left ventricular end-systolic volume; BSA: Body surface area; MMI: Myocardial mass index; MVO: Microvascular obstruction. LVEDVi=LVEDV/BSA; LVESVi=LVESV/BSA; MMI=M/LVEDV/BSA. 表 4 预测矛盾运动的Logistic回归分析
Table 4. Logistic regression analysis for predicting contradictory movement
Index Univariate Multivariate P OR 95% CI P OR 95% CI BNP (ng/L) 0.196 1.000 1.000-1.001 - - - Neutrophil (×109/L) 0.072 0.638 0.391-1.041 - - - NLR 0.016 1.208 1.035-1.410 0.039 1.205 1.010-1.438 LAEF (%) 0.022 0.948 0.906-0.992 - - - LVEF (%) 0.000 0.882 0.825-0.943 - - - LGE% 0.016 1.072 1.013-1.135 - - - LVESVi (mL/m2) 0.001 1.083 1.033-1.135 - - - MVO volume (mL) 0.029 1.777 1.061-2.974 - - - Myocardial strain in infarct segment (%) Radial strain 0.035 0.933 0.875-0.995 0.323 1.055 0.949-1.173 Circumferential strain 0.002 0.790 0.680-0.918 0.024 0.793 0.649-0.969 Longitudinal strain 0.003 0.782 0.666-0.917 - - - Global myocardial strain (%) Radial strain 0.032 0.940 0.889-0.995 - - - Circumferential strain 0.001 0.690 0.560-0.851 - - - Longitudinal strain 0.001 0.734 0.615-0.875 0.019 0.789 0.648-0.961 表 5 预测矛盾运动的风险模型
Table 5. Predictive model for the risk of Contradictory movement
Model AUC Sensitivity(%) Specificity(%) P 95% CI Youden index NLR 0.677 0.702 0.667 0.009 0.554-0.799 0.369 Reciprocal of infarcted segment myocardial circumferential strain 0.762 0.660 0.867 <0.001 0.654-0.870 0.527 Reciprocal of global myocardial longitudinal strain 0.766 0.809 0.667 <0.001 0.660-0.872 0.476 Joint prediction 0.830 0.851 0.767 <0.001 0.732-0.929 0.618 表 6 两组MACEs临床事件比较
Table 6. Comparison of clinical events of MACEs between the two groups [n(%)]
Index Non-contradictory movement group (n=30) Contradictory movement group (n=47) P MACEs 7(23.3) 23(51.1) 0.016 Recurrent myocardial infarction 1(3.3) 1(2.2) 0.643 Rehospitalization for angina 2(6.7) 9(20.0) 0.206 Heart failure 6(20.0) 19(42.2) 0.046 In-stent restenosis 1(3.3) 1(2.2) 0.643 In-stent thrombosis 1(3.3) 1(2.2) 0.643 Repeat revascularization 0 0 - Cardiac death 0 1(2.3) 0.595 All-cause mortality 0 1(2.3) 0.595 MACEs: Major adverse cardiac events. 表 7 多因素COX分析MACEs影响因素
Table 7. Multivariate COX analysis of factors influencing MACEs
Index B P HR 95% CI Contradictory movement 0.897 0.045 2.453 1.022-5.889 Fibrinogen 0.488 0.021 1.630 1.075-2.470 LGE% 0.035 0.026 1.035 1.004-1.067 -
[1] Hu SS. Epidemiology and current management of cerebrovascular disease in China[J]. J Geriatr Cardiol, 2024, 21(5): 465-74. doi: 10.26599/1671-5411.2024.05.009 [2] Yan Y, Guo JC, Wang X, et al. Postprocedural anticoagulation after primary percutaneous coronary intervention for ST-segment-elevation myocardial infarction: a multicenter, randomized, double-blind trial[J]. Circulation, 2024, 149(16): 1258-67. doi: 10.1161/CIRCULATIONAHA.123.067079 [3] 中华医学会超声医学分会超声心动图学组, 中国医师协会心血管分会超声心动图专业委员会. 超声心动图评估心脏收缩和舒张功能临床应用指南[J]. 中华超声影像学杂志, 2020, 29(6): 461-77. doi: 10.3760/cma.j.cn131148-20200227-00115 [4] Marcos-Garcés V, Perez N, Gavara J, et al. Risk score for early risk prediction by cardiac magnetic resonance after acute myocardial infarction[J]. Int J Cardiol, 2022, 349: 150-4. doi: 10.1016/j.ijcard.2021.11.050 [5] Lange T, Backhaus SJ, Schulz A, et al. Cardiovascular magnetic resonance-derived left atrioventricular coupling index and major adverse cardiac events in patients following acute myocardial infarction[J]. J Cardiovasc Magn Reson, 2023, 25(1): 24. doi: 10.1186/s12968-023-00929-w [6] Sun Z, Wang Y, Hu YY, et al. Left ventricular dyssynchrony measured by cardiovascular magnetic resonance-feature tracking in anterior ST-elevation myocardial infarction: relationship with microvascular occlusion myocardial damage[J]. Front Cardiovasc Med, 2023, 10: 1255063. doi: 10.3389/fcvm.2023.1255063 [7] Correction to: 2023 ESC Guidelines for the management of acute coronary syndromes: developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2024, 45(13): 1145. [8] Smith SC Jr, Dove JT, Jacobs AK, et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions[J]. Circulation, 2001, 103(24): 3019-41. doi: 10.1161/01.CIR.103.24.3019 [9] Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease[J]. Am J Cardiol, 1983, 51(3): 606. doi: 10.1016/S0002-9149(83)80105-2 [10] Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association[J]. Circulation, 2002, 105(4): 539-42. doi: 10.1161/hc0402.102975 [11] Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American heart association[J]. Circulation, 2024, 149(8): e347-913. [12] Moroni F, Seth M, Changezi HU, et al. Cause and preventability of in-hospital mortality after PCI: a statewide root-cause analysis of 1, 163 deaths[J]. PLoS One, 2024, 19(3): e0297596. doi: 10.1371/journal.pone.0297596 [13] Lange T, Gertz RJ, Schulz A, et al. Impact of myocardial deformation on risk prediction in patients following acute myocardial infarction[J]. Front Cardiovasc Med, 2023, 10: 1199936. doi: 10.3389/fcvm.2023.1199936 [14] Schäfer M, Mitchell MB, Frank BS, et al. Myocardial strain-curve deformation patterns after Fontan operation[J]. Sci Rep, 2023, 13(1): 11912. doi: 10.1038/s41598-023-39226-y [15] Smiseth OA, Donal E, Boe E, et al. Phenotyping heart failure by echocardiography: imaging of ventricular function and haemodynamics at rest and exercise[J]. Eur Heart J Cardiovasc Imaging, 2023, 24(10): 1329-42. doi: 10.1093/ehjci/jead196 [16] Moraru L, Mirea O, Toader D, et al. Lower limit of normality of segmental multilayer longitudinal strain in healthy adult subjects[J]. J Cardiovasc Dev Dis, 2024, 11(4): 102. [17] Isaak A, Kravchenko D, Mesropyan N, et al. Layer-specific strain analysis with cardiac MRI feature tracking in acute myocarditis[J]. Radiol Cardiothorac Imaging, 2022, 4(3): e210318. doi: 10.1148/ryct.210318 [18] Hao YH, Zhang R, Chen LH, et al. Distinguishing heart failure subtypes: the diagnostic power of different cardiac magnetic resonance imaging parameters[J]. Front Cardiovasc Med, 2024, 11: 1291735. doi: 10.3389/fcvm.2024.1291735 [19] Tang HS, Kwan CT, He JL, et al. Prognostic utility of cardiac MRI myocardial strain parameters in patients with ischemic and nonischemic dilated cardiomyopathy: a multicenter study[J]. AJR Am J Roentgenol, 2023, 220(4): 524-38. doi: 10.2214/AJR.22.28415 [20] Kumar D, Saha M, Guha S, et al. Strain imaging as an early predictor in acute myocardial infarction-An augmented cross-sectional study[J]. Indian Heart J, 2024, 76(1): 31-5. doi: 10.1016/j.ihj.2024.01.001 [21] Lenell J, Lindahl B, Erlinge D, et al. Global longitudinal strain in long-term risk prediction after acute coronary syndrome: an investigation of added prognostic value to ejection fraction[J]. Clin Res Cardiol, 2024. doi: 10.1007/s00392-024-02439-w. [22] 李妙男, 丁丝雨, 姚卓亚, 等. 心脏磁共振可评估急性心肌梗死患者的早期心功能状态[J]. 分子影像学杂志, 2023, 46(4): 620-6. doi: 10.12122/j.issn.1674-4500.2023.04.08 [23] Shin SH, Hung CL, Uno H, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both[J]. Circulation, 2010, 121(9): 1096-103. doi: 10.1161/CIRCULATIONAHA.109.863795 [24] Gräni C, Stark AW, Fischer K, et al. Diagnostic performance of cardiac magnetic resonance segmental myocardial strain for detecting microvascular obstruction and late gadolinium enhancement in patients presenting after a ST-elevation myocardial infarction[J]. Front Cardiovasc Med, 2022, 9: 909204. doi: 10.3389/fcvm.2022.909204 [25] Hundley WG, Bluemke DA, Bogaert J, et al. Society for Cardiovascular Magnetic Resonance (SCMR) guidelines for reporting cardiovascular magnetic resonance examinations[J]. J Cardiovasc Magn Reson, 2022, 24(1): 29. doi: 10.1186/s12968-021-00827-z [26] Feng X, Xu YS, Zeng M, et al. Optical coherence tomography assessment of coronary lesions associated with microvascular dysfunction in ST-segment elevation myocardial infarction[J]. Circ J, 2023, 87(11): 1625-32. doi: 10.1253/circj.CJ-23-0200 [27] Liu J, Ao W, Zhou JW, et al. The correlation between PLR-NLR and prognosis in acute myocardial infarction[J]. Am J Transl Res, 2021, 13(5): 4892-9. [28] Jin ZQ, Wu Q, Chen SH, et al. The associations of two novel inflammation indexes, SⅡ and SIRI with the risks for cardiovascular diseases and all-cause mortality: a ten-year follow-up study in 85, 154 individuals[J]. J Inflamm Res, 2021, 14: 131-40. doi: 10.2147/JIR.S283835 [29] Gao Y, Li YQ, Chen XL, et al. The systemic inflammation index predicts poor clinical prognosis in patients with initially diagnosed acute coronary syndrome undergoing primary coronary angiography[J]. J Inflamm Res, 2023, 16: 5205-19. doi: 10.2147/JIR.S435398