留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

随机光学重构显微镜在外泌体观察中的应用

马迪 夏仁品 冯志坚 杨筱燕 付珏兰 马各富

马迪, 夏仁品, 冯志坚, 杨筱燕, 付珏兰, 马各富. 随机光学重构显微镜在外泌体观察中的应用[J]. 分子影像学杂志, 2018, 41(2): 224-228. doi: 10.3969/j.issn.1674-4500.2018.02.20
引用本文: 马迪, 夏仁品, 冯志坚, 杨筱燕, 付珏兰, 马各富. 随机光学重构显微镜在外泌体观察中的应用[J]. 分子影像学杂志, 2018, 41(2): 224-228. doi: 10.3969/j.issn.1674-4500.2018.02.20
Di MA, Renpin XIA, Zhijian FENG, Xiaoyan YANG, Juelan FU, Gefu MA. Application of stochastic optical reconstruction microscopy in the observation of exosomes[J]. Journal of Molecular Imaging, 2018, 41(2): 224-228. doi: 10.3969/j.issn.1674-4500.2018.02.20
Citation: Di MA, Renpin XIA, Zhijian FENG, Xiaoyan YANG, Juelan FU, Gefu MA. Application of stochastic optical reconstruction microscopy in the observation of exosomes[J]. Journal of Molecular Imaging, 2018, 41(2): 224-228. doi: 10.3969/j.issn.1674-4500.2018.02.20

随机光学重构显微镜在外泌体观察中的应用

doi: 10.3969/j.issn.1674-4500.2018.02.20
详细信息
    作者简介:

    马迪:马  迪,硕士研究生,E-mail: m15587173305@163.com

    通讯作者:

    马各富,副主任检验师,E-mail: 372146162@qq.com

Application of stochastic optical reconstruction microscopy in the observation of exosomes

  • 摘要: 目的 探讨随机光学重构显微镜(STORM)在外泌体观察中的应用价值,并介绍外泌体在随机光学重构显微镜下的成像原理及方法。 方法 实验中在肾性甲旁亢患者原代培养的甲状旁腺细胞的培养液上清中加入EXOQUICK-TC外泌体沉淀剂来获取细胞培养上清中的外泌体,将外泌体膜表面的特异性跨膜蛋白CD63作免疫荧光标记后利用随机光学重构显微镜对外泌体行超高分辨率成像并测量外泌体直径。 结果 实验中随机光学重构显微镜成功的对继发性甲旁亢甲状旁腺细胞原代培养液上清中的外泌体行单分子定位、直径测量及超高分辨率成像。 结论 因随机光学重构显微镜具有独特的光学特性并突破了光学衍射极限的限制,较传统光学显微镜,能获得20~50 nm的分辨率,可对外泌体行单分子精确定位、直径测量、超高分辨率成像。基于STORM的成像优势,相信STORM及其他超高分辨率成像技术将在外泌体及外泌体参与的生物学过程的研究中发挥重要作用。

     

  • 图  1  原代培养3 d的甲状旁腺细胞(×200)

    图  2  144 h内甲状旁腺细胞iPTH的分泌

    图  3  外泌体电子显微镜下的图片

    图  4  间接荧光标记外泌体跨膜蛋白CD63和CM-DiD对外泌体膜染色的示意图

    A:间接荧光标记外泌体跨膜蛋白 CD63 和 CM-DiD 对外泌体膜染色的示意图; B: STORM显微镜拍摄的外泌体超高分辨率成像图; C: 放大后的 STORM 显微镜拍摄的外泌体图片;D: 宽场荧光显微镜拍摄的外泌体图(绿色为DiD细胞膜荧光染料, 红色为Alexa Fluor647荧光标记的CD63蛋白); E: 放大后的宽场荧光显微镜拍摄的外泌体图; F: 利用STROM拍摄的外泌体图计算外泌体直径; G: 高斯拟合曲线, 半峰全宽计算得到外泌体直径约为70 nm.

  • [1] Liu W, Ridefelt P, Akerström G, et al. Differentiation of human parathyroid cells in culture[J]. J Endocrinol, 2001, 168(3): 417-25. doi: 10.1677/joe.0.1680417
    [2] 王宁宁, 王笑云, 陆福明, 等. 肾性甲旁亢患者原代培养的甲状旁腺细胞PTH分泌的变化[J]. 肾脏病与透析肾移植杂志, 2000, 9(02): 193-5. doi: 10.3969/j.issn.1006-298X.2000.02.025
    [3] Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics[J]. Kidney Int, 2008, 74(3): 276-88. doi: 10.1038/sj.ki.5002287
    [4] Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Human saliva-derived exosomes: comparing methods of isolation[J]. J Histochem Cytochem, 2015, 63(3): 181-9. doi: 10.1369/0022155414564219
    [5] Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-78. doi: 10.1016/0092-8674(83)90040-5
    [6] Gholizadeh S, Shehata Draz M, Zarghooni M, et al. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions[J]. Biosens Bioelectron, 2017, 91(2): 588-605. https://www.sciencedirect.com/science/article/pii/S0956566316313124
    [7] Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-93. doi: 10.1038/nri2567
    [8] Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J]. J Neurooncol, 2013, 113(1): 1-11. doi: 10.1007/s11060-013-1084-8
    [9] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7): 940-8. doi: 10.1016/j.bbagen.2012.03.017
    [10] Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities[J]. Biochem Pharmacol, 2012, 83(11): 1484-94. doi: 10.1016/j.bcp.2011.12.037
    [11] Zhan R, Leng X, Liu X, et al. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes[J]. Biochem Biophys Res Commun, 2009, 387(2): 229-33. doi: 10.1016/j.bbrc.2009.06.095
    [12] Coppieters K, Barral AM, Juedes A, et al. No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection[J]. J Immunol, 2009, 182(4): 2213-20. doi: 10.4049/jimmunol.0802578
    [13] Théry C, Duban L, Segura E, et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes[J]. Nat Immunol, 2002, 3(12): 1156-62. doi: 10.1038/ni854
    [14] Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Madrid F, et al. Analysis of microRNA and protein transfer by exosomes during an immune synapse[J]. Methods Mol Biol, 2013, 1024(1024): 41-51. doi: 10.1007/978-1-62703-453-1_4
    [15] Wen D, Peng Y, Liu D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238(10): 166-75. https://www.sciencedirect.com/science/article/pii/S0168365916304904
    [16] Ostenfeld MS, Jeppesen DK, Laurberg JR, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties[J]. Cancer Res, 2014, 74(20): 5758-71. doi: 10.1158/0008-5472.CAN-13-3512
    [17] Franzen CA, Blackwell RH, Todorovic V, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes[J]. Oncogenesis, 2015, 4(11): e163-8.
    [18] Jeppesen DK, Nawrocki A, Jensen SG, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder Cancer cells reveal differential expression of EMT factors[J]. Proteomics, 2014, 14(6): 699-712. doi: 10.1002/pmic.v14.6
    [19] Bates M, Jones SA, Zhuang X. Stochastic optical Reconstruction microscopy (STORM): a method for superresolution fluorescence imaging[J]. Cold Spring Harb Protoc, 2013,13(6): 498-520.
    [20] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical Reconstruction microscopy (STORM)[J]. Nat Methods, 2006, 3(10): 793-5. doi: 10.1038/nmeth929
    [21] 杨 洁, 田翠萍, 钟桂生. 随机光学重构显微成像技术及其应用[J]. 光学学报, 2017,16(03): 51-63. http://mall.cnki.net/magazine/Article/GXXB201703006.htm
    [22] Endesfelder U, Heilemann M. Direct stochastic optical Reconstruction microscopy (dSTORM)[J]. Methods Mol Biol, 2015, 1251(1): 263-76. doi: 10.1007/978-1-4939-2080-8_14
    [23] Chen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancer-derived exosomes using Single-Molecule Localization-Based Super-Resolution microscope[J]. Acs Appl Mater Interfaces, 2016, 8(39): 25825-33. doi: 10.1021/acsami.6b09442
  • 加载中
图(4)
计量
  • 文章访问数:  1599
  • HTML全文浏览量:  636
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-19
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日