留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于影像组学预测肝细胞癌诊疗及预后评估的研究进展

朱莉杉 唐大伟 蔡晓钧 李菁

朱莉杉, 唐大伟, 蔡晓钧, 李菁. 基于影像组学预测肝细胞癌诊疗及预后评估的研究进展[J]. 分子影像学杂志, 2024, 47(4): 438-444. doi: 10.12122/j.issn.1674-4500.2024.04.17
引用本文: 朱莉杉, 唐大伟, 蔡晓钧, 李菁. 基于影像组学预测肝细胞癌诊疗及预后评估的研究进展[J]. 分子影像学杂志, 2024, 47(4): 438-444. doi: 10.12122/j.issn.1674-4500.2024.04.17
ZHU Lishan, TANG Dawei, CAI Xiaojun, LI Jing. Research progress in predicting the diagnosis, treatment and prognosis of hepatocellular carcinoma based on radiomics[J]. Journal of Molecular Imaging, 2024, 47(4): 438-444. doi: 10.12122/j.issn.1674-4500.2024.04.17
Citation: ZHU Lishan, TANG Dawei, CAI Xiaojun, LI Jing. Research progress in predicting the diagnosis, treatment and prognosis of hepatocellular carcinoma based on radiomics[J]. Journal of Molecular Imaging, 2024, 47(4): 438-444. doi: 10.12122/j.issn.1674-4500.2024.04.17

基于影像组学预测肝细胞癌诊疗及预后评估的研究进展

doi: 10.12122/j.issn.1674-4500.2024.04.17
基金项目: 

湖南省自然科学青年基金 2023JJ40503

湖南省中医肿瘤临床医学研究中心项目 2021SK4023

湖南省临床医疗技术创新引导项目 2021SK51410

湖南省卫生健康委科研重点项目 C202203108338

湖南省教育厅优秀青年项目 21B0365

长沙市自然科学基金项目 kq2202453

详细信息
    作者简介:

    朱莉杉,在读本科生,E-mail: 2258611285@qq.com

    通讯作者:

    李菁,博士,副主任医师,副教授,E- mail: lileekim_495@hnucm.edu.cn

Research progress in predicting the diagnosis, treatment and prognosis of hepatocellular carcinoma based on radiomics

  • 摘要: 作为全球最普遍的癌症之一的肝细胞癌(HCC),存在着复发率高、预后较差等问题。影像组学是一种拥有巨大潜力的新兴交叉学科,因其能无创获取肿瘤异质性信息而在HCC等癌症的诊疗及预后评估上具有广阔的应用前景。本文将从影像组学的工作流程,以及其在HCC的鉴别诊断、病理分级、免疫组化标记物的术前预测、预后预测和疗效评估等方面展开综述,并总结影像组学技术尚存在的局限及未来的发展方向,通过梳理影像组学在HCC诊疗及预后评估上的最新研究进展,旨在为未来HCC的诊治提供新的参考和思路。

     

  • 表  1  近5年来基于影像组学在HCC应用上的研究

    Table  1.   Research on the application of radiomics in HCC in the past five years

    Study Classification Dataset Imaging Modality Modeling Approach AUC
    Nie, et al, 2021[26] Discrimination diagnosis Training set=93
    Test set=38
    Total=131
    Enhanced CT Logistic regression model 0.93-0.99
    Lin, et al, 2020[27] Discrimination diagnosis Training set=87
    Test set=37
    Total=124
    Conventional gray scale ultrasound Multivariate Logistic regression model with tenfold cross-validation 0.94
    Dong, et al, 2022[29] Pathological grading Training set=71
    Test set=30
    Total=101
    Contrast-enhanced ultrasound Logistic regression model 0.792-0.908
    Chen, et al, 2021[31] Pathological grading Training set=112
    Test set=49
    Total=161
    Contrast-enhanced CT Support vector machine and logistic regression model 0.904-0.937
    Mao, et al, 2022[30] Pathological grading Training set=85
    Test set=37
    Total=122
    Gd-EOB-DTPA enhanced MRI Artificial neural network and Logistic regression model 0.792-0.944
    Wang, et al, 2020[36] Preoperative prediction of immunohistochemical markers Training set=159
    Test set=68
    Total=227
    Gadolinium-based contrast-enhanced MR Decision tree and logistic regression model 0.822-0.951
    Yang, et al, 2021[37] MVI Prediction Training set=143
    Test set=114
    Total=257
    Gadolinium-based contrast-enhanced MRI Multivariate Logistic regression, SVM, random forest and artificial neural network 0.726-0.857
    Liao, et al, 2022[39] Preoperative prediction of immunohistochemical markers 132 cases Contrast-enhanced CT Factor analysis, logistic regression, minimum absolute shrinkage and selection operator, random forest 0.694-0.771
    Li, et al, 2021[47] MVI prediction Training set=50
    Test set=30
    Total=80
    18F FDG PET/CT Logistic regression and cox regression analysis 0.761-0.900
    Liu, et al, 2022[55] Recurrence and survival prediction Training set=188
    Test set=79
    Total=267
    Contrast-enhanced CT Spearman correlation coefficient, LASSO, Cox regression analysis 0.754-0.810
    Fu, et al, 2021[56] Recurrence and survival prediction Training set=281
    Test set=85
    Total=366
    Enhanced CT Multifactor logistic regression 0.877-0.836
    Wang, et al, 2020[57] Recurrence and survival prediction 201 cases T1WI, T2WI, DWI and dynamic contrast-enhanced imaging Random forest with fivefold cross-validation, multifactor Logistic regression analysis 0.9804-0.7578
    Saalfeld, et al, 2023[59] Recurrence and survival prediction 297 cases CT Random forest, SVM, decision tree, bayesian classification, LASSO 0.6930-0.9134
    Kong, et al, 2021[62] TACE post-treatment Efficacy assessment Training set=69
    Test set=30
    Total=99
    Dynamic contrast MRI LASSO Logistic regression model 0.861-0.884
    Liu, et al, 2020[63] TACE post-treatment Efficacy assessment Training set=89
    Test set=41
    Total=130
    Contrast-enhanced ultrasound LASSO Logistic regression model 0.80-0.98
    下载: 导出CSV
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi: 10.3322/caac.21660
    [2] Sartoris R, Gregory J, Dioguardi Burgio M, et al. HCC advances in diagnosis and prognosis: digital and Imaging[J]. Liver Int, 2021, 41 (Suppl 1): 73-7.
    [3] Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-14. doi: 10.1016/S0140-6736(18)30010-2
    [4] Guiot J, Vaidyanathan A, Deprez L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-40. doi: 10.1002/med.21846
    [5] Peng ZY, Wang YM, Wang YX, et al. Application of radiomics and machine learning in head and neck cancers[J]. Int J Biol Sci, 2021, 17(2): 475-86. doi: 10.7150/ijbs.55716
    [6] Jiang C, Cai YQ, Yang JJ, et al. Radiomics in the diagnosis and treatment of hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2023, 22(4): 346-51. doi: 10.1016/j.hbpd.2023.03.010
    [7] Liu ZY, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-22. doi: 10.7150/thno.30309
    [8] Castaldo A, De Lucia DR, Pontillo G, et al. State of the art in artificial intelligence and radiomics in hepatocellular carcinoma[J]. Diagnostics, 2021, 11(7): 1194. doi: 10.3390/diagnostics11071194
    [9] Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation[J]. PLoS One, 2014, 9(7): e102107. doi: 10.1371/journal.pone.0102107
    [10] Marschner S, Datar M, Gaasch A, et al. A deep image- to- image network organ segmentation algorithm for radiation treatment planning: principles and evaluation[J]. Radiat Oncol, 2022, 17(1): 129. doi: 10.1186/s13014-022-02102-6
    [11] Zhu M, Li SJ, Kuang Y, et al. Artificial intelligence in the radiomic analysis of glioblastomas: a review, taxonomy, and perspective[J]. Front Oncol, 2022, 12: 924245. doi: 10.3389/fonc.2022.924245
    [12] Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-95. doi: 10.2967/jnumed.118.222893
    [13] Miranda J, Horvat N, Fonseca GM, et al. Current status and future perspectives of radiomics in hepatocellular carcinoma[J]. World J Gastroenterol, 2023, 29(1): 43-60. doi: 10.3748/wjg.v29.i1.43
    [14] Park T, Yoon MA, Cho YC, et al. Automated segmentation of the fractured vertebrae on CT and its applicability in a radiomics model to predict fracture malignancy[J]. Sci Rep, 2022, 12(1): 6735. doi: 10.1038/s41598-022-10807-7
    [15] Mu W, Schabath MB, Gillies RJ. Images are data: challenges and opportunities in the clinical translation of radiomics[J]. Cancer Res, 2022, 82(11): 2066-8. doi: 10.1158/0008-5472.CAN-22-1183
    [16] 李双双, 侯震, 刘娟, 等. 影像组学分析与建模工具综述[J]. 中国医学物理学杂志, 2018, 35(9): 1043-9. doi: 10.3969/j.issn.1005-202X.2018.09.010
    [17] Tseng PY, Chen YT, Wang CH, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning[J]. Crit Care, 2020, 24(1): 478. doi: 10.1186/s13054-020-03179-9
    [18] Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-46. doi: 10.1038/s41571-021-00560-7
    [19] Ren S, Zhang JJ, Chen JY, et al. Evaluation of texture analysis for the differential diagnosis of mass-forming pancreatitis from pancreatic ductal adenocarcinoma on contrast-enhanced CT images[J]. Front Oncol, 2019, 9: 1171. doi: 10.3389/fonc.2019.01171
    [20] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-62. doi: 10.1038/nrclinonc.2017.141
    [21] Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models[J]. Med Decis Making, 2006, 26(6): 565-74. doi: 10.1177/0272989X06295361
    [22] Yang T, Wu YH, Zuo Y, et al. Development and validation of prognostic nomograms and a web-based survival rate calculator for sarcomatoid renal cell carcinoma in pre- and post-treatment patients[J]. Transl Androl Urol, 2021, 10(2): 754-64. doi: 10.21037/tau-20-1192
    [23] Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis[J]. World J Gastroenterol, 2018, 24(22): 2348-62. doi: 10.3748/wjg.v24.i22.2348
    [24] 韩玉齐, 魏靖伟, 蒋涵羽, 等. 影像组学研究进展及其在肝癌中的临床应用[J]. 中国科学: 生命科学, 2020, 50(11): 1309-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202011013.htm
    [25] Liu XY, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre- operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?[J]. Eur Radiol, 2021, 31(1): 244-55. doi: 10.1007/s00330-020-07119-7
    [26] Nie P, Wang N, Pang J, et al. CT- based radiomics nomogram: a potential tool for differentiating hepatocellular adenoma from hepatocellular carcinoma in the noncirrhotic liver[J]. Acad Radiol, 2021, 28(6): 799-807. doi: 10.1016/j.acra.2020.04.027
    [27] 林莹, 冯湛, 蒋国平. 灰阶超声影像组学鉴别肝细胞肝癌与肿块型肝内胆管细胞癌的价值[J]. 中国医学影像学杂志, 2020, 28(4): 269-72. doi: 10.3969/j.issn.1005-5185.2020.04.007
    [28] Zhou L, Rui JG, Zhou WX, et al. Edmondson-Steiner grade: a crucial predictor of recurrence and survival in hepatocellular carcinoma without microvascular invasio[J]. Pathol Res Pract, 2017, 213(7): 824-30. doi: 10.1016/j.prp.2017.03.002
    [29] Dong Y, Zuo D, Qiu YJ, et al. Prediction of histological grades and ki- 67 expression of hepatocellular carcinoma based on sonazoid contrast enhanced ultrasound radiomics signatures[J]. Diagnostics, 2022, 12(9): 2175. doi: 10.3390/diagnostics12092175
    [30] Mao YF, Wang JC, Zhu Y, et al. Gd- EOB-DTPA- enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma[J]. Hepatobiliary Surg Nutr, 2022, 11(1): 13-24. doi: 10.21037/hbsn-19-870
    [31] Chen W, Zhang T, Xu L, et al. Radiomics analysis of contrastenhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021, 11: 660509. doi: 10.3389/fonc.2021.660509
    [32] Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno- oncological characteristics of hepatocellular carcinoma[J]. Eur Radiol, 2020, 30(7): 3759-69. doi: 10.1007/s00330-020-06675-2
    [33] Maruyama H, Yamaguchi T, Nagamatsu H, et al. AI-based radiological imaging for HCC: current status and future of ultrasound[J]. Diagnostics, 2021, 11(2): 292. doi: 10.3390/diagnostics11020292
    [34] Hu XX, Yang ZX, Liang HY, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki- 67 labeling index[J]. J Magn Reson Imaging, 2017, 46(2): 383-92. doi: 10.1002/jmri.25555
    [35] Zhuo JY, Lu D, Tan WY, et al. CK19- positive hepatocellular carcinoma is a characteristic subtype[J]. J Cancer, 2020, 11(17): 5069-77. doi: 10.7150/jca.44697
    [36] Wang WT, Gu DS, Wei JW, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5): 3004-14. doi: 10.1007/s00330-019-06585-y
    [37] Yang F, Wan YD, Xu L, et al. MRI- radiomics prediction for cytokeratin 19- positive hepatocellular carcinoma: a multicenter study[J]. Front Oncol, 2021, 11: 672126. doi: 10.3389/fonc.2021.672126
    [38] Yue XT, Zhao YH, Xu Y, et al. Mutant p53 in cancer: accumulation, gain-of-function, and therapy[J]. J Mol Biol, 2017, 429(11): 1595-606. doi: 10.1016/j.jmb.2017.03.030
    [39] Liao HT, Jiang HY, Chen YT, et al. Predicting genomic alterations of phosphatidylinositol-3 kinase signaling in hepatocellular carcinoma: a radiogenomics study based on next-generation sequencing and contrast- enhanced CT[J]. Ann Surg Oncol, 2022. doi: 10.1245/s10434-022-11505-4.
    [40] Hu HT, Wang Z, Huang XW, et al. Ultrasound- based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma[J]. Eur Radiol, 2019, 29(6): 2890-901. doi: 10.1007/s00330-018-5797-0
    [41] Lee S, Kim SH, Lee JE, et al. Preoperative gadoxetic acidenhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma[J]. J Hepatol, 2017, 67(3): 526-34. doi: 10.1016/j.jhep.2017.04.024
    [42] McHugh PP, Gilbert J, Vera S, et al. Alpha-fetoprotein and tumour size are associated with microvascular invasion in explanted livers of patients undergoing transplantation with hepatocellular carcinoma[J]. HPB, 2010, 12(1): 56-61. doi: 10.1111/j.1477-2574.2009.00128.x
    [43] Renzulli M, Brocchi S, Cucchetti A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-42. doi: 10.1148/radiol.2015150998
    [44] Ahn SY, Lee JM, Joo I, et al. Prediction of microvascular invasion of hepatocellular carcinoma using gadoxetic acid- enhanced MR and 18F-FDG PET/CT[J]. Abdom Imag, 2015, 40(4): 843-51. doi: 10.1007/s00261-014-0256-0
    [45] Kaibori M, Ishizaki M, Matsui K, et al. Predictors of microvascular invasion before hepatectomy for hepatocellular carcinoma[J]. J Surg Oncol, 2010, 102(5): 462-8. doi: 10.1002/jso.21631
    [46] Yang L, Gu DS, Wei JW, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-86. doi: 10.1159/000494099
    [47] Li YC, Zhang Y, Fang Q, et al. Radiomics analysis of 18F- FDG PET/CT for microvascular invasion and prognosis prediction in very-early-and early-stage hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging, 2021, 48(8): 2599-614. doi: 10.1007/s00259-020-05119-9
    [48] Liu QP, Xu X, Zhu FP, et al. Prediction of prognostic risk factors in hepatocellular carcinoma with transarterial chemoembolization using multi-modal multi-task deep learning[J]. EClinicalMedicine, 2020, 23: 100379. doi: 10.1016/j.eclinm.2020.100379
    [49] Liu QQ, Li J, Liu F, et al. A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy[J]. Cancer Imaging, 2020, 20(1): 82. doi: 10.1186/s40644-020-00360-9
    [50] Lacaze L, Scotté M. Surgical treatment of intra hepatic recurrence of hepatocellular carcinoma[J]. World J Hepatol, 2015, 7(13): 1755-60. doi: 10.4254/wjh.v7.i13.1755
    [51] Earl TM, Chapman WC. Hepatocellular carcinoma: resection versus transplantation[J]. Semin Liver Dis, 2013, 33(3): 282-92. doi: 10.1055/s-0033-1351783
    [52] Poon RTP, Fan ST, Lo CM, et al. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation[J]. Ann Surg, 2002, 235(3): 373-82. doi: 10.1097/00000658-200203000-00009
    [53] Shah SA, Cleary SP, Wei AC, et al. Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes[J]. Surgery, 2007, 141(3): 330-9. doi: 10.1016/j.surg.2006.06.028
    [54] Kim S, Shin J, Kim DY, et al. Radiomics on gadoxetic acidenhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25(13): 3847-55. doi: 10.1158/1078-0432.CCR-18-2861
    [55] Liu Y, Wei XQ, Zhang XR, et al. CT radiomics combined with clinical variables for predicting the overall survival of hepatocellular carcinoma patients after hepatectomy[J]. Transl Oncol, 2022, 26: 101536. doi: 10.1016/j.tranon.2022.101536
    [56] Fu SR, Lai HR, Huang MY, et al. Multi-task deep learning network to predict future macrovascular invasion in hepatocellular carcinoma[J]. EClinicalMedicine, 2021, 42: 101201. doi: 10.1016/j.eclinm.2021.101201
    [57] Wang XH, Long LH, Cui Y, et al. MRI-based radiomics model for preoperative prediction of 5- year survival in patients with hepatocellular carcinoma[J]. Br J Cancer, 2020, 122(7): 978-85. doi: 10.1038/s41416-019-0706-0
    [58] Saalfeld S, Kreher R, Hille G, et al. Prognostic role of radiomicsbased body composition analysis for the 1-year survival for hepatocellular carcinoma patients[J]. J Cachexia Sarcopenia Muscle, 2023, 14(5): 2301-9. doi: 10.1002/jcsm.13315
    [59] Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast- enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients[J]. Liver Cancer, 2020, 9(4): 397-413. doi: 10.1159/000505694
    [60] 刘一萍, 李新平, 陈磊, 等. 基于人工智能的肝细胞癌精准影像学诊断和复发预测[J]. 临床肝胆病杂志, 2022, 38(3): 521-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD202203006.htm
    [61] Kim J, Choi SJ, Lee SH, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics[J]. AJR Am J Roentgenol, 2018, 211(5): 1026-34. doi: 10.2214/AJR.18.19507
    [62] Kong CL, Zhao ZW, Chen WY, et al. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE[J]. Eur Radiol, 2021, 31(10): 7500-11. doi: 10.1007/s00330-021-07910-0
    [63] Liu D, Liu F, Xie XY, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast- enhanced ultrasound[J]. Eur Radiol, 2020, 30(4): 2365-76. doi: 10.1007/s00330-019-06553-6
    [64] 李嘉颖, 丁洪蕾, 张华妮, 等. 原发性肝癌DWI影像组学特征与中医证型的相关性研究[J]. 中国中西医结合影像学杂志, 2022, 20(2): 146-50 https://www.cnki.com.cn/Article/CJFDTOTAL-JHYX202202010.htm
  • 加载中
表(1)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  37
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 网络出版日期:  2024-05-20
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回