Application of Micro-CT in whole-body fat scanning imaging of mice
-
摘要:
目的 探讨扫描电压和X射线滤光片对小鼠全身脂肪扫描图像质量和对小鼠辐射剂量的影响。 方法 选取C57BL/6小鼠6只,3只为正常对照小鼠,3只为高脂喂养的肥胖小鼠。应用Micro-CT对小鼠全身进行成像扫描,统计不同扫描条件下对小鼠的辐射剂量;使用Analyze12.0分析软件对小鼠皮下和内脏脂肪进行提取,然后评价扫描图像质量以及脂肪分布。 结果 正常小鼠和肥胖小鼠的扫描结果表明,在扫描电压为70 kV和Al 1.0 mm X射线滤光片扫描条件下,小鼠皮下脂肪和内脏脂肪边界清晰且无伪影,图像质量高,辐射剂量小。使用Analyze 12.0软件分离的小鼠皮下脂肪和内脏脂肪连续且平滑,脂肪显示完整。 结论 本研究为临床研究患者皮下脂肪和内脏脂肪提供了理论依据,对CT扫描电压和X射线滤光片的选择提供了数据参考。在降低扫描电压和保证图像质量的前提下,最大限度的降低患者受到的辐射剂量。 Abstract:Objective To investigate the effects of scanning voltage and X-ray filter on image quality and radiation dose of whole body fat scanning in mice. Methods Six C57BL/6 mice were selected, including three were normal control mice and three obese mice fed with high fat diet. Micro-CT was used to scan the whole body of mice, and the radiation dose under different scanning conditions was calculated. The subcutaneous and visceral fat were extracted by Analyze12.0 software, and the image quality and fat distribution were evaluated. Results The scanning results of normal mice and obese mice showed that under the scanning voltage of 70 kV and Al 1.0 mm X-ray filter, the boundary between mice subcutaneous fat and visceral fat was clear and without artifacts, with high image quality and low radiation dose. The subcutaneous fat and visceral fat of mice separated by analyze12.0 software were continuous and smooth with complete fat display. Conclusion This study provides a theoretical basis for the clinical study of subcutaneous fat and visceral fat in patients, and provides data reference for the selection of CT scan voltage and filter. Under the premise of reducing the scanning voltage and ensuring the image quality, the radiation dose to the patient was reduced to the maximum. -
Key words:
- micro-CT /
- tube voltage /
- filter /
- fat /
- image quality
-
表 1 不同扫描条件下正常小鼠不同部位脂肪体积
Table 1. Fat volume of different parts of normal mice under different scanning conditions (Mean±SD, n=3)
Voltage (kV) X-ray filter Subcutaneous fat (mm3) Visceral fat (mm3) Bone volume (mm3) Radiation dose(mGy) 90 Cu 0.06 mm+Al 0.5 mm 1361.72±113.21 314.55±41.29 734.39±50.16 169 70 Cu 0.06 mm+Al 0.5 mm 930.79±96.25** 271.08±46.59** 765.78±43.74 148** 70 Al 0.5 mm 536.68±97.85 353.25±60.73 746.74±38.25 214 70 Al 1.0 mm 1374.66±86.86## 628.93±50.27## 730.37±32.49 164## 50 Cu 0.06 mm+Al 0.5 mm - - 752.11±21.32 45 50 Al 0.5 mm - - 776.97±28.56 114 **P < 0.01 vs 90 kV scanning voltage and Cu 0.06 mm+Al 0.5 mm X-ray filter scanning conditions; ##P < 0.01 vs 70 kV scanning voltage and Al 0.5 mm X-ray filter scanning conditions; -: The boundary between fat and other tissues is blurred, and the corresponding fat volume cannot be analyzed. 表 2 不同扫描条件下肥胖小鼠不同部位脂肪体积
Table 2. Fat volume in different parts of obese mice under different scanning conditions (Mean±SD, n=3)
Voltage (kV) X-ray filter Subcutaneous fat (mm3) Visceral fat (mm3) Bone volume (mm3) Radiation dose(mGy) 90 Cu 0.06 mm+Al 0.5 mm 4946.47±26.17 4443.88±46.28 633.96±41.83 169 70 Cu 0.06 mm+Al 0.5 mm 4855.15±53.76** 4367.69±53.27** 608.91±56.27 148** 70 Al 0.5 mm 4902.01±88.39 4916.38±90.20 645.77±37.19 214 70 Al 1.0 mm 6140.39±62.10## 5415.32±72.13## 655.84±40.87 164## 50 Cu 0.06 mm+Al 0.5 mm - - 659.23±21.32 45 50 Al 0.5 mm - - 671.82±28.56 114 **P < 0.01 vs 90 kV scanning voltage and Cu0.06 mm + Al 0.5 mm X-ray filter scanning conditions; ##P < 0.01 vs 70 kV scanning voltage and Al 0.5 mm X-ray filter scanning conditions; -: The boundary between fat and other tissues is blurred, and the corresponding fat volume cannot be analyzed. -
[1] 杨涛. 肥胖治疗新策略: 基础与临床[J]. 南京医科大学学报: 自然科学版, 2016, 2(1): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK201601002.htm [2] Choi JS, Koh IU, Lee HJ, et al. Effects of excess dietary iron and fat on glucose and lipid metabolism[J]. J Nutr Biochem, 2013, 24 (9): 1634-44. doi: 10.1016/j.jnutbio.2013.02.004 [3] 邵琦, 吴毅凌, 江峰, 等. 脂质蓄积指数与糖尿病患病风险的关系[J]. 中华疾病控制杂志, 2022, 26(2): 125-30, 243. https://www.cnki.com.cn/Article/CJFDTOTAL-JBKZ202202001.htm [4] 王鸣, 刘志诚, 徐斌. 肥胖并发高脂血症与脂质、"脂肪-胰岛轴" 及植物神经功能的相关性分析[J]. 世界科学技术-中医药现代化, 2017, 19(10): 1671-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX201710015.htm [5] 范吉林, 朱婷婷, 田晓玲, 等. 基于生物信息学探讨肥胖与高血压的关系[J]. 中华高血压杂志, 2022, 30(4): 352-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGZ202204010.htm [6] 郑洪来, 周俊, 冯征. 腹部脂肪分布与冠心病的相关性研究[J]. 中国医学影像学杂志, 2003, 11(3): 210-1, 224. doi: 10.3969/j.issn.1005-5185.2003.03.020 [7] 王冉, 李晓南. 人体脂肪组织部位差异性与代谢综合征[J]. 生理学报, 2017, 69(3): 357-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXU201703016.htm [8] Khanna R, Saltzman MD, Elliott JM, et al. Development of 3D method to assess intramuscular spatial distribution of fat infiltration in patients with rotator cuff tear: reliability and concurrent validity[J]. BMC Musculoskelet Disord, 2019, 20(1): 295. doi: 10.1186/s12891-019-2631-z [9] Roldan-Valadez E, Favila R, Martínez-López M, et al. Imaging techniques for assessing hepatic fat content in nonalcoholic fatty liver disease[J]. Ann Hepatol, 2008, 7(3): 212-20. doi: 10.1016/S1665-2681(19)31850-2 [10] Wells SA. Quantification of hepatic fat and iron with magnetic resonance imaging[J]. Magn Reson Imaging Clin N Am, 2014, 22 (3): 397-416. doi: 10.1016/j.mric.2014.04.010 [11] 张连杰, 李家文. 体内脂肪分布与年龄、性别及肥胖的关系[J]. 国外医学: 内科学分册, 1991, 18(9): 421. https://www.cnki.com.cn/Article/CJFDTOTAL-GWLK199109016.htm [12] 何年安, 王文平, 丁红, 等. 肝脏血管平滑肌脂肪瘤常规超声与超声造影特征研究[J]. 中国超声医学杂志, 2021, 37(3): 275-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCY202103012.htm [13] 付金花, 杨秀军. 脂肪纤维瘤病的CT、MRI误诊分析[J]. 磁共振成像, 2021, 12(3): 71-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202103017.htm [14] 缪辉. 锥束X射线成像技术中若干关键问题的研究[D]. 天津: 天津大学, 2012. [15] Gil-Rojas Y, Garzón A, Hernández F, et al. Burden of disease attributable to obesity and overweight in Colombia[J]. Value Health Reg Issues, 2019, 20: 66-72. doi: 10.1016/j.vhri.2019.02.001 [16] 张苏杰, 赵卫红, 于路平, 等. 伴多发淋巴结肿大的乏脂型血管平滑肌脂肪瘤并发术后顽固性淋巴瘘1例报道及文献回顾[J]. 北京大学学报: 医学版, 2018, 50(4): 717-21. https://www.cnki.com.cn/Article/CJFDTOTAL-BYDB201804025.htm [17] 杨其昌, 王翔, 龚沈初. 颈部对称性脂肪瘤病一例[J]. 中华病理学杂志, 2007, 36(5): 353-4. [18] 戴金汉, 崔斌, 李志伟. 结节性硬化合并双肾多发性血管平滑肌脂肪瘤2例[J]. 中国临床医学影像杂志, 2005, 16(8): 476-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX200508025.htm [19] Zhang ZP, Shi D, Zhang Q, et al. Visceral adiposity index (VAI), a powerful predictor of incident hypertension in prehypertensives[J]. Intern Emerg Med, 2018, 13(4): 509-16. doi: 10.1007/s11739-018-1836-8 [20] 王朝格, 翁锡全, 林宝璇, 等. 低温运动干预肥胖大鼠的脂肪组织类型及功能改变[J]. 中国组织工程研究, 2021, 25(20): 3162-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202120011.htm [21] 倪利华, 宋凯云, 朱冬冬, 等. 高糖诱导内皮-脂肪细胞转分化的机制探讨[J]. 中国骨质疏松杂志, 2019, 25(5): 611-6. doi: 10.3969/j.issn.1006-7108.2019.05.008 [22] 李剑, 郑敏文, 石明国, 等. 低kV和CARE Dose4D技术对降低双源CT主动脉成像辐射剂量的价值[J]. 临床放射学杂志, 2011, 30(10): 1528-31. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS201110039.htm [23] 张雪雁, 魏存峰, 王燕芳, 等. 乳腺专用CT中管电压和滤片的优化研究[J]. CT理论与应用研究, 2015, 24(3): 327-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL201503001.htm [24] 张晓军, 朱斌, 郑晓波, 等. 自动管电流调节联合低电压低剂量扫描技术在幼儿胸部CT扫描中的优化应用研究[J]. 临床放射学杂志, 2016, 35(6): 946-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS201606032.htm [25] Gu L, Cai HZ, Zong FK, et al. Femtosecond X-ray streak camera based on photoelectron filter technology for laser fusion[J]. Appl Opt, 2019, 58(17): 4714-9. doi: 10.1364/AO.58.004714 [26] Geijer H. Radiation dose and image quality in diagnostic radiology. Optimization of the dose-image quality relationship with clinical experience from scoliosis radiography, coronary intervention and a flat-panel digital detector[J]. Acta Radiol Suppl, 2002, 43(427): 1-43. [27] Ay MR, Mehranian A, Maleki A, et al. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners[J]. Phys Med, 2013, 29(3): 249-60. doi: 10.1016/j.ejmp.2012.03.005