[1] |
Araújo ALD, Arboleda LPA, Palmier NR, et al. The performance of digital microscopy for primary diagnosis in human pathology: a systematic review[J]. Virchows Arch, 2019, 474(3): 269-87. doi: 10.1007/s00428-018-02519-z
|
[2] |
Achi HE, Belousova T, Chen L, et al. Automated diagnosis of lymphoma with digital pathology images using deep learning[J]. Ann Clin Lab Sci, 2019, 49(2): 153-60.
|
[3] |
Natrajan R, Sailem H, Mardakheh FK, et al. Microenvironmental heterogeneity parallels breast cancer progression: a histology-genomic integration analysis[J]. PLoS Med, 2016, 13 (2): e1001961. doi: 10.1371/journal.pmed.1001961
|
[4] |
Heindl A, Nawaz S, Yuan YY. Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology[J]. Lab Investig, 2015, 95(4): 377-84. doi: 10.1038/labinvest.2014.155
|
[5] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-8. doi: 10.1038/nature21056
|
[6] |
Taylor EC, Irshaid L, Mathur M. Multimodality imaging approach to ovarian neoplasms with pathologic correl[J]. Radiographics, 2021, 41(1): 289-315. doi: 10.1148/rg.2021200086
|
[7] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521 (7553): 436-44. doi: 10.1038/nature14539
|
[8] |
Fassler DJ, Abousamra S, Gupta R, et al. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images[J]. Diagn Pathol, 2020, 15(1): 10.
|
[9] |
Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, et al. Learning to detect lymphocytes in immunohistochemistry with deep learning[J]. Med Image Anal, 2019, 58: 101547. doi: 10.1016/j.media.2019.101547
|
[10] |
Mahmood T, Arsalan M, Owais M, et al. Artificial intelligencebased mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs[J]. J Clin Med, 2020, 9(3): E749. doi: 10.3390/jcm9030749
|
[11] |
Steinbuss G, Kriegsmann M, Zgorzelski C, et al. Deep learning for the classification of non-Hodgkin lymphoma on histopathological images[J]. Cancers, 2021, 13(10): 2419. doi: 10.3390/cancers13102419
|
[12] |
Lu MY, Williamson DFK, Chen TY, et al. Data-efficient and weakly supervised computational pathology on whole-slide images[J]. Nat Biomed Eng, 2021, 5(6): 555-70. doi: 10.1038/s41551-020-00682-w
|
[13] |
Sun H, Zeng XX, Xu T, et al. Computer-taided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1664-76. doi: 10.1109/JBHI.2019.2944977
|
[14] |
Chen JX, Srinivas C. Automatic lymphocyte detection in H&E images with deep neural networks[J]. ArXiv, 2016. doi: abs/1612.03217.
|
[15] |
van Rijthoven M, Balkenhol M, Siliņa K, et al. HookNet: Multiresolution convolutional neural networks for semantic segmentation in histopathology whole-slide images[J]. Med Image Anal, 2021, 68: 101890. doi: 10.1016/j.media.2020.101890
|
[16] |
Graham S, Vu QD, Raza SEA, et al. Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images[J]. Med Image Anal, 2019, 58: 101563. doi: 10.1016/j.media.2019.101563
|
[17] |
Sheikhzadeh F, Ward RK, van Niekerk D, et al. Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks[J]. PLoS One, 2018, 13(1): e0190783. doi: 10.1371/journal.pone.0190783
|
[18] |
Newitt VNJ. Whole slide imaging for primary diagnosis: 'Now it is happening'[N]. CAP Today, 2017-12-13.
|
[19] |
Dimitriou N, Arandjelović O, Caie PD. Deep learning for whole slide image analysis: an overview[J]. Front Med: Lausanne, 2019, 6: 264. doi: 10.3389/fmed.2019.00264
|
[20] |
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-61. doi: 10.1016/S1470-2045(19)30154-8
|
[21] |
Miyoshi H, Sato K, Kabeya Y, et al. Deep learning shows the capability of high- level computer-aided diagnosis in malignant lymphoma[J]. Lab Investig, 2020, 100(10): 1300-10. doi: 10.1038/s41374-020-0442-3
|
[22] |
Shi P. Automated Quantitative Image Analysis of HematoxylinEosin Staining Slides in Lymphoma Based on Hierarchical Kmeans Clustering[C]. 8th International Conference on Information Technology in Medicine, 2016: 99-104.
|
[23] |
Sun Y, Ren Z, Zheng W. Research on Face Recognition Algorithm Based on Image Processing[J]. Comput Intell Neurosci, 2022: 9224203.
|
[24] |
Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning[J]. Npj Digit Med, 2020, 3: 63. doi: 10.1038/s41746-020-0272-0
|
[25] |
Goldstein JS, Lee S, Jordan J, et al. Utilizing digital pathology informatics algorithms for diffuse large B-cell lymphoma subtyping [J]. Blood, 2017, 130: 4147.
|
[26] |
Kim YG, Kim S, Cho CE, et al. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections[J]. Sci Rep, 2020, 10: 21899. doi: 10.1038/s41598-020-78129-0
|
[27] |
Saha M, Chakraborty C, Arun I, et al. An advanced deep learning approach for ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer[J]. Sci Rep, 2017, 7: 3213. doi: 10.1038/s41598-017-03405-5
|
[28] |
Hagos YB, Narayanan PL, Akarca AU, et al. ConCORDe-net: cell count regularized convolutional neural network for cell detection in multiplex immunohistochemistry images[EB/OL][. 2019: arXiv: 1908.00907. https://arxiv.org/abs/1908.00907
|
[29] |
Teramoto A, Tsukamoto T, Kiriyama Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks[J]. Biomed Res Int, 2017: 4067832.
|
[30] |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24(10): 1559-67. doi: 10.1038/s41591-018-0177-5
|
[31] |
Chen MY, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning[J]. Npj Precis Oncol, 2020, 4: 14. doi: 10.1038/s41698-020-0120-3
|
[32] |
Williams BJ, Hanby A, Millican-Slater R, et al. Digital pathology for the primary diagnosis of breast histopathological specimens: an innovative validation and concordance study on digital pathology validation and training[J]. Histopathology, 2018, 72(4): 662-7. doi: 10.1111/his.13403
|
[33] |
Osareh A, Shadgar B. Microarray data analysis for cancer classification[C]//2010 5th International Symposium on Health Informatics and Bioinformatics. Ankara, Turkey. IEEE, : 125-32.
|
[34] |
Whitney J, Corredor G, Janowczyk A, et al. Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+breast cancer[J]. BMC Cancer, 2018, 18(1): 610. doi: 10.1186/s12885-018-4448-9
|
[35] |
Cruz-Roa A, Gilmore H, Basavanhally A, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a Deep Learning approach for quantifying tumor extent [J]. Sci Rep, 2017, 7: 46450. doi: 10.1038/srep46450
|
[36] |
Raj SD, Shurafa M, Shah Z, et al. Primary and secondary breast lymphoma: clinical, pathologic, and multimodality imaging review [J]. Radiographics, 2019, 39(3): 610-25. doi: 10.1148/rg.2019180097
|
[37] |
Ai Y, Zhu HY, Xie CY, et al. Radiomics in cervical cancer: current applications and future potential[J]. Crit Rev Oncol, 2020, 152: 102985. doi: 10.1016/j.critrevonc.2020.102985
|
[38] |
Yang F, Zhang JM, Yang H. OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2+breast cancer patients [J]. Onco Targets Ther, 2018, 11: 7873-81. doi: 10.2147/OTT.S173522
|
[39] |
Corredor G, Wang X, Zhou Y, et al. Spatial architecture and arrangement of tumor- infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer [J]. Clin Cancer Res, 2019, 25(5): 1526-34. doi: 10.1158/1078-0432.CCR-18-2013
|
[40] |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks[J]. Proc Natl Acad Sci USA, 2018, 115(13): E2970-9.
|
[41] |
Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. doi: 10.1038/s41585-019-0193-3
|
[42] |
Wang YQ, Chen L, Mao YP, et al. Prognostic value of immune score in nasopharyngeal carcinoma using digital pathology[J]. J Immunother Cancer, 2020, 8(2): e000334. doi: 10.1136/jitc-2019-000334
|
[43] |
Barker J, Hoogi A, Depeursinge A, et al. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles[J]. Med Image Anal, 2016, 30: 60-71. doi: 10.1016/j.media.2015.12.002
|
[44] |
Albarqouni S, Baur C, Achilles F, et al. AggNet: deep learning from crowds for mitosis detection in breast cancer histology images [J]. IEEE Trans Med Imaging, 2016, 35(5): 1313-21. doi: 10.1109/TMI.2016.2528120
|
[45] |
Wang HB, Roa AC, Basavanhally AN, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features[C]//2014: 034003.
|
[46] |
Zerhouni E, Lányi D, Viana M, et al. Wide residual networks for mitosis detection[C]/2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC, Australia. IEEE, 924-8.
|
[47] |
Veta M, Heng YJ, Stathonikos N, et al. Predicting breast tumor proliferation from whole- slide images: the TUPAC16 challenge [J]. Med Image Anal, 2019, 54: 111-21. doi: 10.1016/j.media.2019.02.012
|
[48] |
Li Y, Wang J, Ye JP, et al. A multi- task learning formulation for survival analysis[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. New York: ACM, 2016: 1715-24.
|
[49] |
Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study[J]. PLoS Med, 2019, 16(1): e1002730. doi: 10.1371/journal.pmed.1002730
|
[50] |
Steiner DF, MacDonald R, Liu Y, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer[J]. Am J Surg Pathol, 2018, 42(12): 1636- 46. doi: 10.1097/PAS.0000000000001151
|
[51] |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. doi: 10.1016/j.media.2017.07.005
|
[52] |
Iqbal MJ, Javed Z, Sadia H, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future[J]. Cancer Cell Int, 2021, 21(1): 270. doi: 10.1186/s12935-021-01981-1
|
[53] |
Zarella MD, Bowman D, Aeffner F, et al. A practical Guide to whole slide imaging: a white paper from the digital pathology association[J]. Arch Pathol Lab Med, 2019, 143(2): 222-34. doi: 10.5858/arpa.2018-0343-RA
|
[54] |
Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis[J]. Sci Rep, 2017, 7: 16878. doi: 10.1038/s41598-017-17204-5
|
[55] |
Moulin P, Grünberg K, Barale-Thomas E, et al. IMI-bigpicture: a central repository for digital pathology[J]. Toxicol Pathol, 2021, 49 (4): 711-3. doi: 10.1177/0192623321989644
|
[56] |
Khan A, Atzori M, Otá lora S, et al. Generalizing convolution neural networks on stain color heterogeneous data for computational pathology[C]//SPIE Medical Imaging. Proc SPIE 11320, Medical Imaging 2020: Digital Pathology, Houston, Texas, USA. 2020, 11320: 173-86.
|
[57] |
Glatz-Krieger K, Spornitz U, Spatz A, et al. Factors to keep in mind when introducing virtual microscopy[J]. Virchows Arch, 2006, 448(3): 248-55. doi: 10.1007/s00428-005-0112-2
|
[58] |
Janowczyk A, Basavanhally A, Madabhushi A. Stain Normalization using Sparse AutoEncoders (StaNoSA): application to digital pathology[J]. Comput Med Imaging Graph, 2017, 57: 50-61. doi: 10.1016/j.compmedimag.2016.05.003
|
[59] |
Shamir L, Orlov N, Eckley DM, et al. ⅡCBU 2008: a proposed benchmark suite for biological image analysis[J]. Med Biol Eng Comput, 2008, 46(9): 943-7. doi: 10.1007/s11517-008-0380-5
|
[60] |
Marinelli RJ, Montgomery K, Liu CL, et al. The stanford tissue microarray database[J]. Nucleic Acids Res, 2007, 36(suppl-1): D871-7.
|
[61] |
Meier A, Nekolla K, Hewitt LC, et al. Hypothesis- free deep survival learning applied to the tumour microenvironment in gastric cancer[J]. J Pathol Clin Res, 2020, 6(4): 273-82. doi: 10.1002/cjp2.170
|
[62] |
Jia ZP, Huang XY, Chang EIC, et al. Constrained deep weak supervision for histopathology image segmentation[J]. IEEE Trans Med Imaging, 2017, 36(11): 2376-88. doi: 10.1109/TMI.2017.2724070
|
[63] |
Wang RJ, Dai WX, Gong J, et al. Development of a novel combined nomogram model integrating deep learning- pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients[J]. J Hematol Oncol, 2022, 15(1): 11. doi: 10.1186/s13045-022-01225-3
|
[64] |
Wang X, Chen H, Gan CX, et al. Weakly supervised deep learning for whole slide lung cancer image analysis[J]. IEEE Trans Cybern, 2020, 50(9): 3950-62. doi: 10.1109/TCYB.2019.2935141
|
[65] |
Feng M, Deng Y, Yang L, et al. Automated quantitative analysis of Ki- 67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma[J]. Diagn Pathol, 2020, 15(1): 65. doi: 10.1186/s13000-020-00957-5
|
[66] |
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases [J]. J Pathol Inform, 2016, 7(1): 29. doi: 10.4103/2153-3539.186902
|
[67] |
Kumar N, Verma R, Sharma S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Trans Med Imaging, 2017, 36(7): 1550-60. doi: 10.1109/TMI.2017.2677499
|
[68] |
Tomita N, Abdollahi B, Wei J, et al. Attention- based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides[J]. JAMA Netw Open, 2019, 2 (11): e1914645. doi: 10.1001/jamanetworkopen.2019.14645
|
[69] |
Wulczyn E, Steiner DF, Xu ZY, et al. Deep learning-based survival prediction for multiple cancer types using histopathology images [J]. PLoS One, 2020, 15(6): e0233678. doi: 10.1371/journal.pone.0233678
|
[70] |
Yao JW, Zhu XL, Jonnagaddala J, et al. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks[J]. Med Image Anal, 2020, 65: 101789. doi: 10.1016/j.media.2020.101789
|
[71] |
Jamaluddin MF, Fauzi MFA, Abas FS. Tumor detection and whole slide classification of H&E lymph node images using convolutional neural network[C]//2017 IEEE International Conference on Signal and Image Processing Applications. Kuching, Malaysia. IEEE, 90-5.
|
[72] |
Xu BL, Liu JX, Hou XX, et al. Look, investigate, and classify: a deep hybrid attention method for breast cancer classification[J]. 2019 IEEE 16th Int Symp Biomed Imaging ISBI 2019: 914-8.
|
[73] |
Zhang ZZ, Chen PJ, McGough M, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning[J]. Nat Mach Intell, 2019, 1(5): 236-45. doi: 10.1038/s42256-019-0052-1
|
[74] |
Gao ZM, Wang L, Zhou LP, et al. HEp-2 cell image classification with deep convolutional neural networks[EB/OL]. 2015: arXiv: 1504.02531. https://arxiv.org/abs/1504.02531.
|
[75] |
Li DG, Bledsoe JR, Zeng Y, et al. A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals[J]. Nat Commun, 2020, 11: 6004. doi: 10.1038/s41467-020-19817-3
|
[76] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556. https://arxiv.org/abs/1409.1556.
|
[77] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, : 2818-26.
|
[78] |
Kumar N, Verma R, Anand D, et al. A multi-organ nucleus segmentation challenge[J]. IEEE Trans Med Imaging, 2020, 39(5): 1380- 91. doi: 10.1109/TMI.2019.2947628
|
[79] |
Sirinukunwattana K, Pluim JPW, Chen H, et al. Gland segmentation in colon histology images: the glas challenge contest[J]. Med Image Anal, 2017, 35: 489-502. doi: 10.1016/j.media.2016.08.008
|
[80] |
Liu JX, Xu BL, Zheng C, et al. An end-to-end deep learning histochemical scoring system for breast cancer TMA[J]. IEEE Trans Med Imaging, 2019, 38(2): 617-28. doi: 10.1109/TMI.2018.2868333
|
[81] |
Bulten W, Bándi P, Hoven J, et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard[J]. Sci Rep, 2019, 9: 864. doi: 10.1038/s41598-018-37257-4
|
[82] |
Song ZG, Zou SM, Zhou WX, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning[J]. Nat Commun, 2020, 11: 4294. doi: 10.1038/s41467-020-18147-8
|
[83] |
Xu ZY, Huang XR, Moro CF, et al. GAN-based virtual re-staining: a promising solution for whole slide image analysis[EB/OL]. 2019: arXiv: 1901.04059. https://arxiv.org/abs/1901.04059.
|
[84] |
Zhou NY, Cai D, Han X, et al. Enhanced cycle-consistent generative adversarial network for color normalization of H&E stained images[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 694-702.
|
[85] |
Mahapatra D, Sedai, Garnavi R. Elastic registration of medical images with GANs[EB/OL]. 2018: arXiv: 1805.02369. https://arxiv.org/abs/1805.02369
|
[86] |
Steiner DF, Chen PHC, Mermel CH. Closing the translation gap: AI applications in digital pathology[J]. Biochim Biophys Acta BBA Rev Cancer, 2021, 1875(1): 188452. doi: 10.1016/j.bbcan.2020.188452
|
[87] |
Komura D, Ishikawa S. Machine learning methods for histopathological image analysis[J]. Comput Struct Biotechnol J, 2018, 16: 34-42. doi: 10.1016/j.csbj.2018.01.001
|
[88] |
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol, 2019, 16(11): 703-15. doi: 10.1038/s41571-019-0252-y
|
[89] |
Zhou XY, Guo Y, Shen ML, et al. Application of artificial intelligence in surgery[J]. Front Med, 2020, 14(4): 417-30. doi: 10.1007/s11684-020-0770-0
|
[90] |
Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276(2): 363-9. doi: 10.1097/SLA.0000000000004594
|
[91] |
Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery [J]. Front Med, 2020, 14(4): 369-81. doi: 10.1007/s11684-020-0784-7
|
[92] |
Vaishya R, Javaid M, Khan IH, et al. Artificial intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes Metab Syndr Clin Res Rev, 2020, 14(4): 337-9. doi: 10.1016/j.dsx.2020.04.012
|
[93] |
Alimadadi A, Aryal S, Manandhar I, et al. Artificial intelligence and machine learning to fight COVID- 19[J]. Physiol Genomics, 2020, 52(4): 200-2. doi: 10.1152/physiolgenomics.00029.2020
|
[94] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-6. doi: 10.1016/j.ejca.2011.11.036
|
[95] |
Liu ZY, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-22. doi: 10.7150/thno.30309
|
[96] |
Drukker L, Noble JA, Papageorghiou AT. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology [J]. Ultrasound Obstet Gynecol, 2020, 56(4): 498-505. doi: 10.1002/uog.22122
|
[97] |
Boehm KM, Khosravi P, Vanguri R, et al. Harnessing multimodal data integration to advance precision oncology[J]. Nat Rev Cancer, 2022, 22(2): 114-26. doi: 10.1038/s41568-021-00408-3
|