留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

DNA三角双锥荧光分子探针的制备及初步生物学评价

段晓燕 都义日 翁兆平 王涛 李剑波

段晓燕, 都义日, 翁兆平, 王涛, 李剑波. DNA三角双锥荧光分子探针的制备及初步生物学评价[J]. 分子影像学杂志, 2022, 45(1): 8-12. doi: 10.12122/j.issn.1674-4500.2022.01.02
引用本文: 段晓燕, 都义日, 翁兆平, 王涛, 李剑波. DNA三角双锥荧光分子探针的制备及初步生物学评价[J]. 分子影像学杂志, 2022, 45(1): 8-12. doi: 10.12122/j.issn.1674-4500.2022.01.02
DUAN Xiaoyan, DU Yiri, WENG Zhaoping, WANG Tao, LI Jianbo. Preparation and preliminary biological evaluation of DNA bipyramid fluorescent molecular probes[J]. Journal of Molecular Imaging, 2022, 45(1): 8-12. doi: 10.12122/j.issn.1674-4500.2022.01.02
Citation: DUAN Xiaoyan, DU Yiri, WENG Zhaoping, WANG Tao, LI Jianbo. Preparation and preliminary biological evaluation of DNA bipyramid fluorescent molecular probes[J]. Journal of Molecular Imaging, 2022, 45(1): 8-12. doi: 10.12122/j.issn.1674-4500.2022.01.02

DNA三角双锥荧光分子探针的制备及初步生物学评价

doi: 10.12122/j.issn.1674-4500.2022.01.02
基金项目: 

内蒙古自治区科技计划项目 2019GG106

详细信息
    作者简介:

    段晓燕,硕士,副主任医师,E-mail: 630657625@qq.com

    通讯作者:

    李剑波,博士,研究员,E-mail: lijianbo_1235@163.com

Preparation and preliminary biological evaluation of DNA bipyramid fluorescent molecular probes

  • 摘要:   目的  构建基于DNA三角双锥纳米结构(DBN)的荧光分子探针,于活体动物水平探索探针的生物学性质。  方法  采用一步退火法,制备携带侧臂链的DBN;与DyLight 755偶联的寡聚核苷酸单链A20(DyLight 755-A20)混匀,制备荧光分子探针DyLight 755-DBN;将DyLight 755-DBN通过尾静脉注射实验鼠体内,于不同时间点处死,取感兴趣脏器测定荧光计数,探索分子探针的体内分布情况;将DyLight 755-DBN通过尾静脉注射体内,于不同时间点行小动物活体成像研究。  结果  成功制备携带侧臂链的DBN,利用聚丙烯酰胺凝胶电泳表征;通过与DyLight 755-A20等摩尔量杂交,成功制备荧光分子探针DyLight 755-DBN。体内分布实验显示DyLight 755-DBN进入体内后,荧光信号主要集中在肾脏、肝脏、脾脏、胃;注射分子探针5~15 min,在实验鼠的肺部有一定的荧光信号,但15 min后,荧光信号几乎没有。活体成像结果显示DyLight 755-DBN进入实验鼠体内主要集中在肝脏和胃,膀胱中维持较强的荧光信号。  结论  荧光分子探针DyLight 755-DBN是一种性质优良的分子影像探针。

     

  • 图  1  方案一:DBN及荧光分子探针Dylight755-DBN的制备

    Figure  1.  Option 1: Preparation of DBN and fluorescent molecular probe Dylight755-DBN

    图  2  利用聚丙烯酰胺凝胶电泳技术表征T20-DBN

    Figure  2.  Characterization of T20-DBN by Polyacrylamide Gel Electrophoresis

    图  3  DyLight 755-DBN在实验鼠体内的分布情况

    Figure  3.  Distribution of DyLight 755-DBN in experimental mice (n=3)

    图  4  DyLight 755-DBN注射后不同时间点的实验鼠活体显像图

    注: 上排: 俯卧位; 下排: 仰卧位.

    Figure  4.  In vivo imaging of experimental mice at different time points after injection of DyLight 755-DBN

    表  1  DNA寡聚核苷酸单链的序列信息

    Table  1.   Sequence information of DNA oligonucleotide single strand

    ssDNA 序列信息
    a AGGCAGTTGAGACGAACATTCCTAAGTCTGAAATTTATCACCCGCCATAGTAGACGTATCACC
    b CTTGCTACACGATTCAGACTTAGGAATGTTCGACATGCGAGGGTCCAATACCGACGATTACAG
    c GGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATCCACTACTATGGCG
    A CTGCGCGGATGACTCAACTGCCTGGTGATACGATCTAGTCTCTACGTCAAGTAAGAACCTTAG
    B CCTCGCATGACATCCGCGCAGCTAAGGTTCAAAGTTCCTGCCGCTTCACGGACGGTATTGGAC
    C CTCTTCCCGACCGTGAAGCGGCAGGAACTTATACTTGACGTAGAGACTAGAAGGATGGGCATG
    T20-a* TTTTTTTTTTTTTTTTTTTTCTAAGTCTGAAATTTATCACCCGCCATAGTA
    GACGTATCACCAGGCAGTTGAGACGAACATTC
    Dylight755-A20 Dylight755-AAAAAAAAAAAAAAAAAAAA
    下载: 导出CSV
  • [1] Ni JS, Li YX, Yue WT, et al. Nanoparticle- based cell trackers for biomedical applications[J]. Theranostics, 2020, 10(4): 1923-47. doi: 10.7150/thno.39915
    [2] Wagner AM, Knipe JM, Orive G, et al. Quantum dots in biomedical applications[J]. Acta Biomater, 2019, 94: 44-63. doi: 10.1016/j.actbio.2019.05.022
    [3] Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine[J]. Int J Mol Sci, 2019, 20(4): 865. doi: 10.3390/ijms20040865
    [4] Wang ZH, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: a review[J]. Environ Res, 2021, 194: 110593. doi: 10.1016/j.envres.2020.110593
    [5] Dong XM, Wu ZH, Li XP, et al. The size- dependent cytotoxicity of amorphous silica nanoparticles: a systematic review of in vitro studies[J]. Int J Nanomedicine, 2020, 15: 9089-113. doi: 10.2147/IJN.S276105
    [6] Pérez-Garnes M, Gutiérrez-Salmerón M, Morales V, et al. Engineering hollow mesoporous silica nanoparticles to increase cytotoxicity[J]. Mater Sci Eng C Mater Biol Appl, 2020, 112: 110935. doi: 10.1016/j.msec.2020.110935
    [7] Kahn JS, Minevich B, Gang O. Three-dimensional DNA-programmable nanoparticle superlattices[J]. Curr Opin Biotechnol, 2020, 63: 142-50. doi: 10.1016/j.copbio.2019.12.025
    [8] Ma NN, Minevich B, Liu JL, et al. Directional assembly of nanoparticles by DNA shapes: towards designed architectures and functionality[J]. Top Curr Chem (Cham), 2020, 378(2): 36. doi: 10.1007/s41061-020-0301-0
    [9] Kim KR, Jegal H, Kim J, et al. A self-assembled DNA tetrahedron as a carrier for in vivo liver-specific delivery of siRNA[J]. Biomater Sci, 2020, 8(2): 586-90. doi: 10.1039/C9BM01769K
    [10] Hong CY, Zhang XX, Dai CY, et al. Highly sensitive detection of multiple antibiotics based on DNA tetrahedron nanostructure-functionalized magnetic beads[J]. Anal Chim Acta, 2020, 1120: 50-8. doi: 10.1016/j.aca.2020.04.024
    [11] Deng T. Construction and analysis of double helix for triangular bipyramid and pentangular bipyramid[J]. Comput Math Methods Med, 2020, 2020: 5609593.
    [12] Lin HY, Li J, Liu SY. The calculation of topological structures of strands-based DNA trigonal bipyramids[J]. J Mol Graph Model, 2020, 95: 107492. doi: 10.1016/j.jmgm.2019.107492
    [13] Märcher A, Nijenhuis MAD, Gothelf KV. A wireframe DNA cube: antibody conjugate for targeted delivery of multiple copies of monomethyl auristatin E[J]. Angew Chem Int Ed Engl, 2021, 60(40): 21691-6. doi: 10.1002/anie.202107221
    [14] Duan XY, Du YR, Wang CM, et al. Radiolabeling and preliminary evaluation of 99mTc- labeled DNA cube nanoparticles as potential tracers for SPECT imaging[J]. Int J Nanomed, 2021, 16: 5665-73. doi: 10.2147/IJN.S325791
    [15] Hu QQ, Li H, Wang LH, et al. DNA nanotechnology- enabled drug delivery systems[J]. Chem Rev, 2019, 119(10): 6459-506. doi: 10.1021/acs.chemrev.7b00663
    [16] Li JB, Jiang DW, Bao BL, et al. Radiolabeling of DNA bipyramid and preliminary biological evaluation in mice[J]. Bioconjug Chem, 2016, 27(4): 905-10. doi: 10.1021/acs.bioconjchem.5b00680
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  79
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日