留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

可视化荧光成像技术的胸部外科应用

鲍峰 李子煜 元及 吴宗阳

鲍峰, 李子煜, 元及, 吴宗阳. 可视化荧光成像技术的胸部外科应用[J]. 分子影像学杂志, 2021, 44(6): 1041-1046. doi: 10.12122/j.issn.1674-4500.2021.06.31
引用本文: 鲍峰, 李子煜, 元及, 吴宗阳. 可视化荧光成像技术的胸部外科应用[J]. 分子影像学杂志, 2021, 44(6): 1041-1046. doi: 10.12122/j.issn.1674-4500.2021.06.31
BAO Feng, LI Ziyu, YUAN Ji, WU Zongyang. Application of visual fluorescence imaging in thoracic surgery[J]. Journal of Molecular Imaging, 2021, 44(6): 1041-1046. doi: 10.12122/j.issn.1674-4500.2021.06.31
Citation: BAO Feng, LI Ziyu, YUAN Ji, WU Zongyang. Application of visual fluorescence imaging in thoracic surgery[J]. Journal of Molecular Imaging, 2021, 44(6): 1041-1046. doi: 10.12122/j.issn.1674-4500.2021.06.31

可视化荧光成像技术的胸部外科应用

doi: 10.12122/j.issn.1674-4500.2021.06.31
详细信息
    作者简介:

    鲍峰,硕士,主治医师,E-mail: 896900052@qq.com

Application of visual fluorescence imaging in thoracic surgery

  • 摘要: 可视化荧光成像是一种新兴的外科辅助技术,近年来被广泛应用于多个外科领域。荧光染料具有实时可视化成像特性,可以显示患者的肿瘤、血供、淋巴、神经等不同解剖结构,从而提高手术的准确性和术后恢复,并可能由此改变手术方法。针对胸部疾病,可视化荧光成像技术在肺结节检出定位,肿瘤切缘和残留识别,胸腔镜手术中肺段间平面识别,预防食管切除术后吻合口瘘,辨认术中胸导管和治疗术后乳糜漏,绘制前哨淋巴结等方面具有良好的临床指导意义。为了评估在不同手术场景下对荧光引导的不同需求,我们分别阐述了成像技术和荧光剂的临床前研究和临床应用进展,至此标志着可视化荧光成像技术的日趋成熟,以及在胸部外科中广泛的应用前景。

     

  • 表  1  主流近红外成像系统

    Table  1.   Mainstream near infrared imaging system

    企业 成像系统 成像模式 适用场景
    Karl Storz
    (卡尔史托斯公司,德国)
    Image1 STM RubinaTM 4K分辨率 腔镜
    OPA1®NIR/ICG成像技术
    (叠加成像模式)
    S成像技术
    LED光源(不使用激光)
    Image1 STM 白光及PDD模式下全高清图像 腔镜
    脚踏实现模式切换
    无覆盖模式
    Stryker
    (史赛克公司,美国)
    1688AIM 4K 4K分辨率 腔镜
    绿色叠加模式
    L11光源和自动照明技术
    SPY-PHI 基于1688AIM 4K的便携设备 开放
    白光,SPY荧光模式
    (叠加成像模式)
    颜色分段模式
    Quest Medical Imaging (奥林巴斯,日本) Quest Spectrum® HD图像 腔镜和开放
    Imaging
    (奥林巴斯,日本)
    两个专用NIR通道同时捕获彩色和最多两个的荧光图像
    Intuitive Surgical Devices Inc.
    (直觉外科,美国)
    Firefly® DAVinci Si and Xi Surgical Robots DA Vinci Xi与Firefly荧光成像系统兼容,实现普通和荧光模式的切换[2] 机器人系统
    Hamamatus Photonics
    (滨松光子学公司,澳大利亚、欧盟、日本)
    PDE-NeoⅡ 手持式成像系统
    黑白和彩色图像
    开放
    NIR: 近红外反射; ICG: 吲哚菁绿; LED: 发光二极管; HD: 高分辨率.
    下载: 导出CSV
  • [1] Thammineedi SR, Saksena AR, Nusrath S, et al. Fluorescenceguided cancer surgery-A new paradigm[J]. J Surg Oncol, 2021, 123 (8): 1679-98. doi: 10.1002/jso.26469
    [2] Meershoek P, KleinJan GH, van Willigen DM, et al. Multiwavelength fluorescence imaging with a da Vinci Firefly-a technical look behind the scenes [J]. J Robot Surg, 2021, 15(5): 751-60. doi: 10.1007/s11701-020-01170-8
    [3] Benson RC, Kues HA. Fluorescence properties of indocyanine green as related to angiography[J]. Phys Med Biol, 1978, 23(1): 159-63. doi: 10.1088/0031-9155/23/1/017
    [4] Lohman RF, Ozturk CN, Ozturk C, et al. An analysis of current techniques used for intraoperative flap evaluation[J]. Ann Plast Surg, 2015, 75(6): 679-85. doi: 10.1097/SAP.0000000000000235
    [5] Keller DS, Ishizawa T, Cohen R, et al. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions[J]. Lancet Gastroenterol Hepatol, 2017, 2(10): 757-66. doi: 10.1016/S2468-1253(17)30216-9
    [6] van Manen L, Handgraaf HJM, Diana M, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescenceguided abdominal surgery[J]. J Surg Oncol, 2018, 118(2): 283-300. doi: 10.1002/jso.25105
    [7] Cwalinski T, Polom W, Marano L, et al. Methylene blue-current knowledge, fluorescent properties, and its future use[J]. J Clin Med, 2020, 9(11): 3538. doi: 10.3390/jcm9113538
    [8] Chen S, Zhou J, Zhang J, et al. Video-assisted thoracoscopic solitary pulmonary nodule resection after CT-guided hookwire localization: 43 cases report and literature review[J]. Surg Endosc, 2011, 25(6): 1723-9. doi: 10.1007/s00464-010-1502-3
    [9] Lizza N, Eucher P, Haxhe JP, et al. Thoracoscopic resection of pulmonary nodules after computed tomographic-guided coil labeling [J]. Ann Thorac Surg, 2001, 71(3): 986-8. doi: 10.1016/S0003-4975(00)02505-4
    [10] Asano F, Shindoh J, Shigemitsu K, et al. Ultrathin bronchoscopic Barium marking with virtual bronchoscopic navigation for fluoroscopy-assisted thoracoscopic surgery[J]. Chest, 2004, 126(5): 1687-93. doi: 10.1378/chest.126.5.1687
    [11] Khereba M, Ferraro P, Duranceau A, et al. Thoracoscopic localization of intraparenchymal pulmonary nodules using direct intracavitary thoracoscopic ultrasonography prevents conversion of VATS procedures to thoracotomy in selected patients[J]. J Thorac Cardiovasc Surg, 2012, 144(5): 1160-5. doi: 10.1016/j.jtcvs.2012.08.034
    [12] Madajewski B, Judy BF, Mouchli A, et al. Intraoperative nearinfrared imaging of surgical wounds after tumor resections can detect residual disease[J]. Clin Cancer Res, 2012, 18(20): 5741-51. doi: 10.1158/1078-0432.CCR-12-1188
    [13] Jiang JX, Keating JJ, Jesus EM, et al. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green[J]. Am J Nucl Med Mol Imaging, 2015, 5(4): 390-400. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=PMC4529592&blobtype=pdf
    [14] Kosaka N, Mitsunaga M, Longmire MR, et al. Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green[J]. Int J Cancer, 2011, 129(7): 1671-7. doi: 10.1002/ijc.26113
    [15] Heneweer C, Holland JP, Divilov V, et al. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system[J]. J Nucl Med, 2011, 52(4): 625-33. doi: 10.2967/jnumed.110.083998
    [16] Kim HK, Quan YH, Choi BH, et al. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging [J]. Eur J Cardiothorac Surg, 2016, 49(5): 1497-502. doi: 10.1093/ejcts/ezv367
    [17] Mao Y, Chi C, Yang F, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries[J]. Eur J Cardiothorac Surg, 2017, 52 (6): 1190-6. doi: 10.1093/ejcts/ezx207
    [18] Holt D, Okusanya O, Judy R, et al. Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation[J]. PLoS One, 2014, 9(7): 1033-42. doi: 10.1371/journal.pone.0103342
    [19] Keating JJ, Okusanya OT, De Jesus E, et al. Intraoperative molecular imaging of lung adenocarcinoma can identify residual tumor cells at the surgical margins [J]. Mol Imaging Biol, 2016, 18(2): 209-18. doi: 10.1007/s11307-015-0878-9
    [20] Kennedy GT, Okusanya OT, Keating JJ, et al. The optical biopsy: a novel technique for rapid intraoperative diagnosis of primary pulmonary adenocarcinomas [J]. Ann Surg, 2015, 262(4): 602-9. doi: 10.1097/SLA.0000000000001452
    [21] Predina JD, Newton AD, Keating J, et al. Intraoperative molecular imaging combined with positron emission tomography improves surgical management of peripheral malignant pulmonary nodules [J]. Ann Surg, 2017, 266(3): 479-88. doi: 10.1097/SLA.0000000000002382
    [22] Predina JD, Newton AD, Xia L, et al. An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas[J]. Oncotarget, 2018, 9(17): 13517-29. doi: 10.18632/oncotarget.24399
    [23] Yamato Y, Tsuchida M, Watanabe T, et al. Early results of a prospective study of limited resection for bronchioloalveolar adenocarcinoma of the lung[J]. Ann Thorac Surg, 2001, 71(3): 971-4. doi: 10.1016/S0003-4975(00)02507-8
    [24] Tsubota N. An improved method for distinguishing the intersegmental plane of the lung[J]. Surg Today, 2000, 30(10): 963-4. doi: 10.1007/s005950070056
    [25] Matsuoka H, Nishio W, Sakamoto T, et al. Selective segmental jet injection to distinguish the intersegmental plane using jet ventilation [J]. Jpn J Thorac Cardiovasc Surg, 2003, 51(8): 400-1. doi: 10.1007/BF02719478
    [26] Okada M, Mimura T, Ikegaki J, et al. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting[J]. J Thorac Cardiovasc Surg, 2007, 133(3): 753-8. doi: 10.1016/j.jtcvs.2006.11.005
    [27] Kamiyoshihara M, Kakegawa S, Morishita Y. Convenient and improved method to distinguish the intersegmental plane in pulmonary segmentectomy using a butterfly needle[J]. Ann Thorac Surg, 2007, 83(5): 1913-4. doi: 10.1016/j.athoracsur.2006.06.052
    [28] Oizumi H, Kato H, Endoh M, et al. Slip knot bronchial ligation method for thoracoscopic lung segmentectomy[J]. Ann Thorac Surg, 2014, 97(4): 1456-8. doi: 10.1016/j.athoracsur.2013.07.125
    [29] Wang J, Xu X, Wen W, et al. Modified method for distinguishing the intersegmental border for lung segmentectomy[J]. Thorac Cancer, 2018, 9(2): 330-3. doi: 10.1111/1759-7714.12540
    [30] Misaki N, Chang SS, Igai H, et al. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system[J]. J Thorac Cardiovasc Surg, 2010, 140(4): 752-6. doi: 10.1016/j.jtcvs.2010.07.020
    [31] Sekine Y, Ko E, Oishi H, et al. A simple and effective technique for identification of intersegmental Planes by infrared thoracoscopy after transbronchial injection of indocyanine green[J]. J Thorac Cardiovasc Surg, 2012, 143(6): 1330-5. doi: 10.1016/j.jtcvs.2012.01.079
    [32] Oh S, Suzuki K, Miyasaka Y, et al. New technique for lung segmentectomy using indocyanine green injection[J]. Ann Thorac Surg, 2013, 95(6): 2188-90. doi: 10.1016/j.athoracsur.2012.12.068
    [33] Anayama T, Hirohashi K, Miyazaki R, et al. Fluorescence visualization of the intersegmental plane by bronchoscopic instillation of indocyanine green into the targeted segmental Bronchus: determination of the optimal settings[J]. J Int Med Res, 2021, 49(2): 1-9.
    [34] Gomez DR, Komaki R. Postoperative radiation therapy for nonsmall cell lung cancer and thymic malignancies[J]. Cancers: Basel, 2012, 4(1): 307-22. doi: 10.3390/cancers4010307
    [35] Azari F, Kennedy G, Singhal S. Intraoperative detection and assessment of lung nodules[J]. Surg Oncol Clin N Am, 2020, 29(4): 525-41. doi: 10.1016/j.soc.2020.06.006
    [36] Keating J, Judy R, Newton A, et al. Near-infrared operating lamp for intraoperative molecular imaging of a mediastinal tumor[J]. BMC Med Imaging, 2016, 16: 15. doi: 10.1186/s12880-016-0120-5
    [37] Kennedy GT, Newton A, Predina J, et al. Intraoperative near-infrared imaging of mesothelioma[J]. Transl Lung Cancer Res, 2017, 6(3): 279-84. doi: 10.21037/tlcr.2017.05.01
    [38] Alanezi K, Urschel JD. Mortality secondary to esophageal anastomotic leak[J]. Ann Thorac Cardiovasc Surg, 2004, 10(2): 71-5. http://pdfs.semanticscholar.org/ace1/25cd7f78e031de52d4ccc71752f7a5d92ae1.pdf
    [39] Van Daele E, Van de Putte D, Ceelen W, et al. Risk factors and consequences of anastomotic leakage after Ivor Lewis oesophagectomy[J]. Interact Cardiovasc Thorac Surg, 2016, 22(1): 32-7. doi: 10.1093/icvts/ivv276
    [40] Karliczek A, Harlaar NJ, Zeebregts CJ, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery[J]. Int J Colorectal Dis, 2009, 24(5): 569-76. doi: 10.1007/s00384-009-0658-6
    [41] Slooter MD, Eshuis WJ, Cuesta MA, et al. Fluorescent imaging using indocyanine green during esophagectomy to prevent surgical morbidity: a systematic review and meta-analysis[J]. J Thorac Dis, 2019, 11(suppl 5): S755-65. http://www.researchgate.net/publication/332479761_Fluorescent_imaging_using_indocyanine_green_during_esophagectomy_to_prevent_surgical_morbidity_A_systematic_review_and_meta-analysis
    [42] Koyanagi K, Ozawa S, Oguma J, et al. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: New predictive evaluation of anastomotic leakage after esophagectomy [J]. Medicine: Baltimore, 2016, 95(30): e4386. doi: 10.1097/MD.0000000000004386
    [43] Kumagai Y, Hatano S, Sobajima J, et al. Indocyanine green fluorescence angiography of the reconstructed gastric tube during esophagectomy: efficacy of the 90-second rule[J]. Dis Esophagus, 2018, 31(12): 1-4. http://www.onacademic.com/detail/journal_1000040451392510_da67.html
    [44] Hulscher JB, Tijssen JG, Obertop H, et al. Transthoracic versus transhiatal resection for carcinoma of the esophagus: a meta-analysis [J]. Ann Thorac Surg, 2001, 72(1): 306-13. doi: 10.1016/S0003-4975(00)02570-4
    [45] Bryant AS, Minnich DJ, Wei B, et al. The incidence and management of postoperative chylothorax after pulmonary resection and thoracic mediastinal lymph node dissection[J]. Ann Thorac Surg, 2014, 98 (1): 232-5;discussion235. doi: 10.1016/j.athoracsur.2014.03.003
    [46] Shen Y, Feng M, Khan MA, et al. A simple method minimizes chylothorax after minimally invasive esophagectomy[J]. J Am Coll Surg, 2014, 218(1): 108-12. doi: 10.1016/j.jamcollsurg.2013.09.014
    [47] Yang F, Zhou J, Li H, et al. Near-infrared fluorescence-guided thoracoscopic surgical intervention for postoperative chylothorax [J]. Interact Cardiovasc Thorac Surg, 2018, 26(2): 171-5. doi: 10.1093/icvts/ivx304
    [48] Vecchiato M, MartinoA, Sponza M, et al. Thoracic duct identification with indocyanine green fluorescence during minimally invasive esophagectomy with patient in prone position[J]. Dis Esophagus, 2020, 33(12): doaa030. doi: 10.1093/dote/doaa030
    [49] Yamashita S, Tokuishi K, Miyawaki M, et al. Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer[J]. Ann Surg Oncol, 2012, 19(3): 728-33. doi: 10.1245/s10434-011-2145-x
    [50] Liptay MJ. Sentinel node mapping in lung cancer: the holy grail?[J]. Ann Thorac Surg, 2008, 85(2): S778-9. doi: 10.1016/j.athoracsur.2007.10.103
    [51] Gilmore DM, Khullar OV, Jaklitsch MT, et al. Identification of metastatic nodal disease in a phase 1 dose-escalation trial of intraoperative sentinel lymph node mapping in non-small cell lung cancer using near- infrared imaging[J]. J Thorac Cardiovasc Surg, 2013, 146(3): 562-70. doi: 10.1016/j.jtcvs.2013.04.010
    [52] Yuasa Y, Seike J, Yoshida T, et al. Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer [J]. Ann Surg Oncol, 2012, 19(2): 486-93. doi: 10.1245/s10434-011-1922-x
    [53] Hachey KJ, Gilmore DM, Armstrong KW, et al. Safety and feasibility of near-infrared image- guided lymphatic mapping of regional lymph nodes in esophageal cancer [J]. J Thorac Cardiovasc Surg, 2016, 152(2): 546-54. doi: 10.1016/j.jtcvs.2016.04.025
    [54] Schlottmann F, Barbetta A, Mungo B, et al. Identification of the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging[J]. J Laparoendosc Adv Surg Tech A, 2017, 27 (3): 268-71. doi: 10.1089/lap.2016.0523
    [55] Peyre CG, Hagen JA, DeMeester SR, et al. The number of lymph nodes removed predicts survival in esophageal cancer: an international study on the impact of extent of surgical resection[J]. Ann Surg, 2008, 248(4): 549-56. doi: 10.1097/SLA.0b013e318188c474
    [56] Udagawa H, Ueno M, Shinohara H, et al. The importance of grouping of lymph node stations and rationale of three-field lymphoadenectomy for thoracic esophageal cancer[J]. J Surg Oncol, 2012, 106(6): 742-7. doi: 10.1002/jso.23122
    [57] Matsuoka S, Eguchi T, Takeda T, et al. Three-dimensional computed tomography and indocyanine green-guided technique for pulmonary sequestration surgery[J]. Gen Thorac Cardiovasc Surg, 2021, 69(3): 621-4. doi: 10.1007/s11748-020-01511-2
    [58] Chu XP, Chen ZH, Lin SM, et al. Watershed analysis of the target pulmonary artery for real-time localization of non-palpable pulmonary nodules [J]. Transl Lung Cancer Res, 2021, 10(4): 1711-9. doi: 10.21037/tlcr-20-1281
  • 加载中
表(1)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  203
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日