Research progress of dynamic 18F-FDG PET/CT imaging in malignant tumors
-
摘要: 18F-FDG PET/CT已广泛应用于恶性肿瘤的诊断、分期、疗效监测及预后评价。最大标准化摄取值是最常用的半定量评估指标,但它只是单点估计,忽略了18F-FDG摄取分布的变化,且易受多种因素影响。动态18F-FDG PET/CT检查是一个连续采集过程,可以利用动力学模型定量分析肿瘤组织对FDG的净摄取率,与传统的SUV相比,动态扫描可以对肿瘤微小代谢变化做出早期评估,更直接、有效地反映示踪剂的摄取。但因其扫描时间长、参数分析复杂等因素限制了临床应用,目前,随着多种简化扫描协议的开发,动态18F-FDG扫描已在多种恶性肿瘤中取得了初步研究成果。本文主要从动态18F-FDG PET/CT显像局限性及简化方案及动态18F-FDG PET/CT显像在肺癌、乳腺癌、胰腺癌、淋巴瘤、骨髓瘤、胶质母细胞瘤、软组织肉瘤恶性肿瘤中的应用中进行综述。
-
关键词:
- 动态18F-FDG PET/CT /
- 恶性肿瘤 /
- 临床应用
Abstract: 18F- FDG PET/CT has been widely used in the diagnosis, staging, efficacy monitoring and prognosis evaluation of malignant tumors. SUVmax is the most commonly used semi-quantitative index, but it is only a single point estimation, ignoring the change of 18F- FDG uptake distribution, and it is susceptible to many factors. Dynamic 18F- FDG PET/CT is a continuous acquisition process that allows quantitative analysis of the net uptake rate of FDG in tumor by using a kinetic model. Compared with traditional SUVs, dynamic scanning can provide early assessment of small metabolic changes in tumors, reflecting tracer uptake more directly and effectively. However, due to its long scanning time and complicated parameter analysis, the clinical application is limited. Nowadays, with the development of a variety of simplified scanning protocols, dynamic 18F-FDG scanning has achieved preliminary research results in a variety of malignant tumors.-
Key words:
- dynamic 18F-FDG PET/CT /
- malignant tumor /
- clinical application
-
[1] De Jaeghere EA, Laloo F, Lippens L, et al. Splenic 18F-FDG uptake on baseline PET/CT is associated with oncological outcomes and tumor immune state in uterine cervical cancer[J]. Gynecol Oncol, 2020, 159(2): 335-43. doi: 10.1016/j.ygyno.2020.08.001 [2] van den Hoff J, Oehme L, Schramm G, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG[J]. EJNMMI Res, 2013, 3(1): 77. doi: 10.1186/2191-219X-3-77 [3] Torizuka T, Nobezawa S, Momiki S, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer[J]. Eur J Nucl Med, 2000, 27(10): 1538-42. doi: 10.1007/s002590000312 [4] Dimitrakopoulou-Strauss A, Pan LY, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients[J]. Cancer Imaging, 2012, 12: 283-9. doi: 10.1102/1470-7330.2012.0033 [5] Samimi R, Kamali-Asl A, Geramifar P, et al. Short-duration dynamic FDG PET imaging: Optimization and clinical application[J]. Phys Med, 2020, 80: 193-200. doi: 10.1016/j.ejmp.2020.11.004 [6] Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method[J]. Ann Neurol, 1979, 6(5): 371-88. doi: 10.1002/ana.410060502 [7] Calcagni ML, Indovina L, di Franco D, et al. Are the simplified methods to estimate Ki in 18F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods[J]. Q J Nucl Med Mol Imaging, 2018, 62(2): 190-9. http://www.ncbi.nlm.nih.gov/pubmed/25479417 [8] Wang Q, Wang RF, Zhang JH, et al. Differential diagnosis of pulmonary lesions by parametric imaging in (18)F-FDG PET/CT dynamic multi-bed scanning[J]. J BUON, 2013, 18(4): 928-34. http://pdfs.semanticscholar.org/4c8a/ca1b3a67b538dd4921ba973fa3b185d608d9.pdf [9] de Geus-Oei LF, Visser EP, Krabbe PF, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies[J]. J Nucl Med, 2006, 47(6): 945-9. http://annonc.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=jnumed&resid=47/6/945 [10] Pavlopoulos S, Thireou T, Kontaxakis G, et al. Analysis and interpretation of dynamic FDG PET oncological studies using data reduction techniques[J]. Biomed Eng Online, 2007, 6: 36. doi: 10.1186/1475-925X-6-36 [11] Shinya T, Otomi Y, Kubo M, et al. Preliminary clinical assessment of dynamic 18F-fluorodeoxyglucose positron emission tomography/ computed tomography for evaluating lymph node metastasis in patients with lung cancer: a prospective study[J]. Ann Nucl Med, 2019, 33(6): 414-23. doi: 10.1007/s12149-019-01350-z [12] Shinya T, Otomi Y, Dimitrakopoulou-Strauss A, et al. Preliminary clinical assessment of dynamic 18F-fluorodeoxyglucose positron- emission tomography/computed tomography for evaluating the clinicopathological grade in patients with non-Hodgkin's lymphoma: a prospective study[J]. Nucl Med Commun, 2020, 41(1): 26-33. doi: 10.1097/MNM.0000000000001120 [13] Zhang L, Chen J, Xu C, et al. The value of 4D fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis of lung lesions[J]. Nucl Med Commun, 2020, 41(12): 1306-12. doi: 10.1097/MNM.0000000000001289 [14] Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives[J]. Eur J Nucl Med Mol Imaging, 2021, 48 (1): 21-39. doi: 10.1007/s00259-020-04843-6 [15] Liu GB, Xu HR, Hu PC, et al. Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2021, 48 (8): 2363-72. doi: 10.1007/s00259-020-05124-y [16] Ye Q, Wu J, Lu YH, et al. Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose[J]. Phys Med Biol, 2018, 63(17): 175015. doi: 10.1088/1361-6560/aad97f [17] Huang YE, Lu HI, Liu FY, et al. Solitary pulmonary nodules differentiated by dynamic F-18 FDG PET in a region with high prevalence of granulomatous disease[J]. J Radiat Res, 2012, 53(2): 306-12. doi: 10.1269/jrr.11089 [18] Yang M, Lin Z, Xu ZQ, et al. Influx rate constant of 18F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1198-208. doi: 10.1007/s00259-020-04682-5 [19] 徐丽娜, 唐竹晓, 李双标, 等. 基于DWI和DCE-MRI的影像特征对四种不同分子亚型乳腺癌的诊断价值探讨[J]. 现代肿瘤医学, 2021, 29 (1): 116-20. doi: 10.3969/j.issn.1672-4992.2021.01.026 [20] Groheux D, Espié M, Giacchetti S, et al. Performance of FDG PET/ CT in the clinical management of breast cancer[J]. Radiology, 2013, 266(2): 388-405. doi: 10.1148/radiol.12110853 [21] Kajáry K, Tőkés T, Dank M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer[J]. Nucl Med Commun, 2015, 36(1): 28-37. doi: 10.1097/MNM.0000000000000217 [22] Kajáry K, Lengyel Z, Tőkés AM, et al. Dynamic FDG-PET/CT in the initial staging of primary breast cancer: clinicopathological correlations[J]. Pathol Oncol Res, 2020, 26(2): 997-1006. doi: 10.1007/s12253-019-00641-0 [23] Mankoff DA, Dunnwald LK, Partridge SC, et al. Blood flow-metabolism mismatch: good for the tumor, bad for the patient[J]. Clin Cancer Res, 2009, 15(17): 5294-6. doi: 10.1158/1078-0432.CCR-09-1448 [24] Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours[J]. Eur J Cancer Oxf Engl, 2002, 38(12): 1564-79. http://www.ncbi.nlm.nih.gov/pubmed/9059336 [25] Laking G, Price P. Radionuclide imaging of perfusion and hypoxia[J]. Eur J Nucl Med Mol Imaging, 2010, 37(Suppl 1): S20-9. http://www.onacademic.com/detail/journal_1000034447208810_72a4.html [26] Mullani NA, Herbst RS, O'Neil RG, et al. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow[J]. J Nucl Med, 2008, 49(4): 517-23. doi: 10.2967/jnumed.107.048504 [27] Cochet A, Pigeonnat S, Khoury B, et al. Evaluation of breast tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors[J]. J Nucl Med, 2012, 53(4): 512-20. doi: 10.2967/jnumed.111.096834 [28] Payan N, Presles B, Brunotte F, et al. Biological correlates of tumor perfusion and its heterogeneity in newly diagnosed breast cancer using dynamic first-pass 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1103-15. doi: 10.1007/s00259-019-04422-4 [29] Wangerin KA, Muzi M, Peterson LM, et al. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy[J]. Phys Med Biol, 2017, 62(9): 3639-55. doi: 10.1088/1361-6560/aa6023 [30] 任胜男, 李丹妮, 潘桂霞, 等. 胰腺癌18F-FDG PET/CT诊断及预后评估的研究进展[J]. 中华胰腺病杂志, 2019, 19(4): 307-10. doi: 10.3760/cma.j.issn.1674-1935.2019.04.018 [31] Epelbaum R, Frenkel A, Haddad R, et al. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT[J]. J Nucl Med, 2013, 54(1): 12-8. doi: 10.2967/jnumed.112.107466 [32] 中华医学会核医学分会. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版[)J]. 中华核医学与分子影像杂志, 2021, 41(3): 161-9. doi: 10.3760/cma.j.cn321828-20210129-00018 [33] Caers J, Withofs N, Hillengass J, et al. The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma[J]. Haematologica, 2014, 99(4): 629-37. doi: 10.3324/haematol.2013.091918 [34] Sachpekidis C, Mai EK, Goldschmidt H, et al. (18)F-FDG dynamic PET/CT in patients with multiple myeloma: patterns of tracer uptake and correlation with bone marrow plasma cell infiltration rate[J]. Clin Nucl Med, 2015, 40(6): e300-7. doi: 10.1097/RLU.0000000000000773 [35] Sachpekidis C, Türk M, Dimitrakopoulou-Strauss A. Quantitative, dynamic 18F-FDG PET/CT in monitoring of smoldering myeloma: a case report[J]. Diagnostics (Basel), 2021, 11(4): 649. doi: 10.3390/diagnostics11040649 [36] Sachpekidis C, Merz M, Kopp-Schneider A, et al. Quantitative dynamic 18F-fluorodeoxyglucose positron emission tomography/ computed tomography before autologous stem cell transplantation predicts survival in multiple myeloma[J]. Haematologica, 2019, 104 (9): e420-e423. doi: 10.3324/haematol.2018.213041 [37] 聂梦林, 邱晓光. 放射治疗对胶质母细胞瘤免疫状态的影响和意义[J]. 中国现代神经疾病杂志, 2020, 20(2): 127-35. doi: 10.3969/j.issn.1672-6731.2020.02.009 [38] 蒋海辉, 林松. 脑胶质母细胞瘤的治疗现状与展望[J]. 中华外科杂志, 2020, 58(1): 70-4. doi: 10.3760/cma.j.issn.0529-5815.2020.01.015 [39] Li YL, Leiva-Salinas C, Majewski S, et al. Kinetic and wavelet analysis of dynamic FDG PET data in human glioblastoma[C]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). October 21-28, 2017, Atlanta, GA. IEEE, 2017: 1-3. [40] Sachpekidis C, Karampinis I, Jakob J, et al. Neoadjuvant pazopanib treatment in high-risk soft tissue sarcoma: a quantitative dynamic 18F-FDG PET/CT study of the German interdisciplinary sarcoma group[J]. Cancers, 2019, 11(6): 790. doi: 10.3390/cancers11060790 [41] Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study[J]. J Nucl Med, 2010, 51(4): 551-8. doi: 10.2967/jnumed.109.070862 [42] Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis[J]. Eur J Nucl Med Mol Imaging, 2010, 37(8): 1481-9. doi: 10.1007/s00259-010-1435-z
点击查看大图
计量
- 文章访问数: 1146
- HTML全文浏览量: 444
- PDF下载量: 87
- 被引次数: 0