留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

动态18F-FDG PET/CT显像在恶性肿瘤中的研究进展

孔冉 宾莉 李玉娜 翁娜 王旭

孔冉, 宾莉, 李玉娜, 翁娜, 王旭. 动态18F-FDG PET/CT显像在恶性肿瘤中的研究进展[J]. 分子影像学杂志, 2021, 44(5): 873-877. doi: 10.12122/j.issn.1674-4500.2021.05.28
引用本文: 孔冉, 宾莉, 李玉娜, 翁娜, 王旭. 动态18F-FDG PET/CT显像在恶性肿瘤中的研究进展[J]. 分子影像学杂志, 2021, 44(5): 873-877. doi: 10.12122/j.issn.1674-4500.2021.05.28
KONG Ran, BIN Li, LI Yuna, WENG Na, WANG Xu. Research progress of dynamic 18F-FDG PET/CT imaging in malignant tumors[J]. Journal of Molecular Imaging, 2021, 44(5): 873-877. doi: 10.12122/j.issn.1674-4500.2021.05.28
Citation: KONG Ran, BIN Li, LI Yuna, WENG Na, WANG Xu. Research progress of dynamic 18F-FDG PET/CT imaging in malignant tumors[J]. Journal of Molecular Imaging, 2021, 44(5): 873-877. doi: 10.12122/j.issn.1674-4500.2021.05.28

动态18F-FDG PET/CT显像在恶性肿瘤中的研究进展

doi: 10.12122/j.issn.1674-4500.2021.05.28
基金项目: 国家自然科学基金(81771828);山东省自然科学基金(ZR2017MH037);山东省高校计划(J18KB116)
详细信息
    作者简介:

    孔冉,硕士,住院医师,E-mail: 1622972022@qq.com

    通讯作者:

    王旭,硕士,副主任医师,E-mail: wangxu1978@163.com

Research progress of dynamic 18F-FDG PET/CT imaging in malignant tumors

Funds: Supported by National Natural Science Foundation of China (81771828)
  • 摘要: 18F-FDG PET/CT已广泛应用于恶性肿瘤的诊断、分期、疗效监测及预后评价。最大标准化摄取值是最常用的半定量评估指标,但它只是单点估计,忽略了18F-FDG摄取分布的变化,且易受多种因素影响。动态18F-FDG PET/CT检查是一个连续采集过程,可以利用动力学模型定量分析肿瘤组织对FDG的净摄取率,与传统的SUV相比,动态扫描可以对肿瘤微小代谢变化做出早期评估,更直接、有效地反映示踪剂的摄取。但因其扫描时间长、参数分析复杂等因素限制了临床应用,目前,随着多种简化扫描协议的开发,动态18F-FDG扫描已在多种恶性肿瘤中取得了初步研究成果。本文主要从动态18F-FDG PET/CT显像局限性及简化方案及动态18F-FDG PET/CT显像在肺癌、乳腺癌、胰腺癌、淋巴瘤、骨髓瘤、胶质母细胞瘤、软组织肉瘤恶性肿瘤中的应用中进行综述。

     

  • [1] De Jaeghere EA, Laloo F, Lippens L, et al. Splenic 18F-FDG uptake on baseline PET/CT is associated with oncological outcomes and tumor immune state in uterine cervical cancer[J]. Gynecol Oncol, 2020, 159(2): 335-43. doi: 10.1016/j.ygyno.2020.08.001
    [2] van den Hoff J, Oehme L, Schramm G, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG[J]. EJNMMI Res, 2013, 3(1): 77. doi: 10.1186/2191-219X-3-77
    [3] Torizuka T, Nobezawa S, Momiki S, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer[J]. Eur J Nucl Med, 2000, 27(10): 1538-42. doi: 10.1007/s002590000312
    [4] Dimitrakopoulou-Strauss A, Pan LY, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients[J]. Cancer Imaging, 2012, 12: 283-9. doi: 10.1102/1470-7330.2012.0033
    [5] Samimi R, Kamali-Asl A, Geramifar P, et al. Short-duration dynamic FDG PET imaging: Optimization and clinical application[J]. Phys Med, 2020, 80: 193-200. doi: 10.1016/j.ejmp.2020.11.004
    [6] Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method[J]. Ann Neurol, 1979, 6(5): 371-88. doi: 10.1002/ana.410060502
    [7] Calcagni ML, Indovina L, di Franco D, et al. Are the simplified methods to estimate Ki in 18F-FDG PET studies feasible in clinical routine? Comparison between three simplified methods[J]. Q J Nucl Med Mol Imaging, 2018, 62(2): 190-9. http://www.ncbi.nlm.nih.gov/pubmed/25479417
    [8] Wang Q, Wang RF, Zhang JH, et al. Differential diagnosis of pulmonary lesions by parametric imaging in (18)F-FDG PET/CT dynamic multi-bed scanning[J]. J BUON, 2013, 18(4): 928-34. http://pdfs.semanticscholar.org/4c8a/ca1b3a67b538dd4921ba973fa3b185d608d9.pdf
    [9] de Geus-Oei LF, Visser EP, Krabbe PF, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies[J]. J Nucl Med, 2006, 47(6): 945-9. http://annonc.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=jnumed&resid=47/6/945
    [10] Pavlopoulos S, Thireou T, Kontaxakis G, et al. Analysis and interpretation of dynamic FDG PET oncological studies using data reduction techniques[J]. Biomed Eng Online, 2007, 6: 36. doi: 10.1186/1475-925X-6-36
    [11] Shinya T, Otomi Y, Kubo M, et al. Preliminary clinical assessment of dynamic 18F-fluorodeoxyglucose positron emission tomography/ computed tomography for evaluating lymph node metastasis in patients with lung cancer: a prospective study[J]. Ann Nucl Med, 2019, 33(6): 414-23. doi: 10.1007/s12149-019-01350-z
    [12] Shinya T, Otomi Y, Dimitrakopoulou-Strauss A, et al. Preliminary clinical assessment of dynamic 18F-fluorodeoxyglucose positron- emission tomography/computed tomography for evaluating the clinicopathological grade in patients with non-Hodgkin's lymphoma: a prospective study[J]. Nucl Med Commun, 2020, 41(1): 26-33. doi: 10.1097/MNM.0000000000001120
    [13] Zhang L, Chen J, Xu C, et al. The value of 4D fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis of lung lesions[J]. Nucl Med Commun, 2020, 41(12): 1306-12. doi: 10.1097/MNM.0000000000001289
    [14] Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives[J]. Eur J Nucl Med Mol Imaging, 2021, 48 (1): 21-39. doi: 10.1007/s00259-020-04843-6
    [15] Liu GB, Xu HR, Hu PC, et al. Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2021, 48 (8): 2363-72. doi: 10.1007/s00259-020-05124-y
    [16] Ye Q, Wu J, Lu YH, et al. Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose[J]. Phys Med Biol, 2018, 63(17): 175015. doi: 10.1088/1361-6560/aad97f
    [17] Huang YE, Lu HI, Liu FY, et al. Solitary pulmonary nodules differentiated by dynamic F-18 FDG PET in a region with high prevalence of granulomatous disease[J]. J Radiat Res, 2012, 53(2): 306-12. doi: 10.1269/jrr.11089
    [18] Yang M, Lin Z, Xu ZQ, et al. Influx rate constant of 18F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1198-208. doi: 10.1007/s00259-020-04682-5
    [19] 徐丽娜, 唐竹晓, 李双标, 等. 基于DWI和DCE-MRI的影像特征对四种不同分子亚型乳腺癌的诊断价值探讨[J]. 现代肿瘤医学, 2021, 29 (1): 116-20. doi: 10.3969/j.issn.1672-4992.2021.01.026
    [20] Groheux D, Espié M, Giacchetti S, et al. Performance of FDG PET/ CT in the clinical management of breast cancer[J]. Radiology, 2013, 266(2): 388-405. doi: 10.1148/radiol.12110853
    [21] Kajáry K, Tőkés T, Dank M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer[J]. Nucl Med Commun, 2015, 36(1): 28-37. doi: 10.1097/MNM.0000000000000217
    [22] Kajáry K, Lengyel Z, Tőkés AM, et al. Dynamic FDG-PET/CT in the initial staging of primary breast cancer: clinicopathological correlations[J]. Pathol Oncol Res, 2020, 26(2): 997-1006. doi: 10.1007/s12253-019-00641-0
    [23] Mankoff DA, Dunnwald LK, Partridge SC, et al. Blood flow-metabolism mismatch: good for the tumor, bad for the patient[J]. Clin Cancer Res, 2009, 15(17): 5294-6. doi: 10.1158/1078-0432.CCR-09-1448
    [24] Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours[J]. Eur J Cancer Oxf Engl, 2002, 38(12): 1564-79. http://www.ncbi.nlm.nih.gov/pubmed/9059336
    [25] Laking G, Price P. Radionuclide imaging of perfusion and hypoxia[J]. Eur J Nucl Med Mol Imaging, 2010, 37(Suppl 1): S20-9. http://www.onacademic.com/detail/journal_1000034447208810_72a4.html
    [26] Mullani NA, Herbst RS, O'Neil RG, et al. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow[J]. J Nucl Med, 2008, 49(4): 517-23. doi: 10.2967/jnumed.107.048504
    [27] Cochet A, Pigeonnat S, Khoury B, et al. Evaluation of breast tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors[J]. J Nucl Med, 2012, 53(4): 512-20. doi: 10.2967/jnumed.111.096834
    [28] Payan N, Presles B, Brunotte F, et al. Biological correlates of tumor perfusion and its heterogeneity in newly diagnosed breast cancer using dynamic first-pass 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1103-15. doi: 10.1007/s00259-019-04422-4
    [29] Wangerin KA, Muzi M, Peterson LM, et al. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy[J]. Phys Med Biol, 2017, 62(9): 3639-55. doi: 10.1088/1361-6560/aa6023
    [30] 任胜男, 李丹妮, 潘桂霞, 等. 胰腺癌18F-FDG PET/CT诊断及预后评估的研究进展[J]. 中华胰腺病杂志, 2019, 19(4): 307-10. doi: 10.3760/cma.j.issn.1674-1935.2019.04.018
    [31] Epelbaum R, Frenkel A, Haddad R, et al. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT[J]. J Nucl Med, 2013, 54(1): 12-8. doi: 10.2967/jnumed.112.107466
    [32] 中华医学会核医学分会. 淋巴瘤18F-FDG PET/CT及PET/MR显像临床应用指南(2021版[)J]. 中华核医学与分子影像杂志, 2021, 41(3): 161-9. doi: 10.3760/cma.j.cn321828-20210129-00018
    [33] Caers J, Withofs N, Hillengass J, et al. The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma[J]. Haematologica, 2014, 99(4): 629-37. doi: 10.3324/haematol.2013.091918
    [34] Sachpekidis C, Mai EK, Goldschmidt H, et al. (18)F-FDG dynamic PET/CT in patients with multiple myeloma: patterns of tracer uptake and correlation with bone marrow plasma cell infiltration rate[J]. Clin Nucl Med, 2015, 40(6): e300-7. doi: 10.1097/RLU.0000000000000773
    [35] Sachpekidis C, Türk M, Dimitrakopoulou-Strauss A. Quantitative, dynamic 18F-FDG PET/CT in monitoring of smoldering myeloma: a case report[J]. Diagnostics (Basel), 2021, 11(4): 649. doi: 10.3390/diagnostics11040649
    [36] Sachpekidis C, Merz M, Kopp-Schneider A, et al. Quantitative dynamic 18F-fluorodeoxyglucose positron emission tomography/ computed tomography before autologous stem cell transplantation predicts survival in multiple myeloma[J]. Haematologica, 2019, 104 (9): e420-e423. doi: 10.3324/haematol.2018.213041
    [37] 聂梦林, 邱晓光. 放射治疗对胶质母细胞瘤免疫状态的影响和意义[J]. 中国现代神经疾病杂志, 2020, 20(2): 127-35. doi: 10.3969/j.issn.1672-6731.2020.02.009
    [38] 蒋海辉, 林松. 脑胶质母细胞瘤的治疗现状与展望[J]. 中华外科杂志, 2020, 58(1): 70-4. doi: 10.3760/cma.j.issn.0529-5815.2020.01.015
    [39] Li YL, Leiva-Salinas C, Majewski S, et al. Kinetic and wavelet analysis of dynamic FDG PET data in human glioblastoma[C]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). October 21-28, 2017, Atlanta, GA. IEEE, 2017: 1-3.
    [40] Sachpekidis C, Karampinis I, Jakob J, et al. Neoadjuvant pazopanib treatment in high-risk soft tissue sarcoma: a quantitative dynamic 18F-FDG PET/CT study of the German interdisciplinary sarcoma group[J]. Cancers, 2019, 11(6): 790. doi: 10.3390/cancers11060790
    [41] Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study[J]. J Nucl Med, 2010, 51(4): 551-8. doi: 10.2967/jnumed.109.070862
    [42] Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis[J]. Eur J Nucl Med Mol Imaging, 2010, 37(8): 1481-9. doi: 10.1007/s00259-010-1435-z
  • 加载中
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  445
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回