留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

99mTc-3PRGD2 SPECT/CT显像用于肺部肿瘤分期及疗效评估的研究进展

孙浩 张国建 鲁海文 王雪梅

孙浩, 张国建, 鲁海文, 王雪梅. 99mTc-3PRGD2 SPECT/CT显像用于肺部肿瘤分期及疗效评估的研究进展[J]. 分子影像学杂志, 2021, 44(5): 868-872. doi: 10.12122/j.issn.1674-4500.2021.05.27
引用本文: 孙浩, 张国建, 鲁海文, 王雪梅. 99mTc-3PRGD2 SPECT/CT显像用于肺部肿瘤分期及疗效评估的研究进展[J]. 分子影像学杂志, 2021, 44(5): 868-872. doi: 10.12122/j.issn.1674-4500.2021.05.27
SUN Hao, ZHANG Guojian, LU Haiwen, WANG Xuemei. Research progress of 99mTc-3PRGD2 SPECT/CT in staging and efficacy evaluation of lung tumors[J]. Journal of Molecular Imaging, 2021, 44(5): 868-872. doi: 10.12122/j.issn.1674-4500.2021.05.27
Citation: SUN Hao, ZHANG Guojian, LU Haiwen, WANG Xuemei. Research progress of 99mTc-3PRGD2 SPECT/CT in staging and efficacy evaluation of lung tumors[J]. Journal of Molecular Imaging, 2021, 44(5): 868-872. doi: 10.12122/j.issn.1674-4500.2021.05.27

99mTc-3PRGD2 SPECT/CT显像用于肺部肿瘤分期及疗效评估的研究进展

doi: 10.12122/j.issn.1674-4500.2021.05.27
基金项目: 国家自然科学基金(81960319, 61860311);内蒙古自治区科技计划(201502100)
详细信息
    作者简介:

    孙浩,在读硕士研究生,E-mail: 1149153227@qq.com

    通讯作者:

    王雪梅,博士,二级教授,主任医师,E- mail: wangxuemei201010@163.com

Research progress of 99mTc-3PRGD2 SPECT/CT in staging and efficacy evaluation of lung tumors

Funds: Supported by National Natural Science Foundation of China (81960319, 61860311)
  • 摘要: 近年来,肺癌发病率逐年上升,也是恶性肿瘤中致死率排名第1位的疾病,晚期患者生存率极低。血管生成和淋巴结转移是恶性肿瘤的两个非常重要的特征,通常认为整合素αvβ3的表达与这两个特征均有关。放射性核素标记的精氨酸-甘氨酸-天冬氨酸肽能与整合素特异的结合,进而可以反映肿瘤血管的变化。达到对肺癌原发灶、转移灶及疗效的早期监测,本文对近年来国内外99mTc-3PRGD2 SPECT/CT用于肺部肿瘤诊断的研究进展进行综述,主要从99mTc-3PRGD2显像剂、9mTc-3PRGD2在肺癌原发灶显像方面、99mTc-3PRGD2 SPECT显像对非小细胞肺癌淋巴结转移监测、99mTc-3PRGD2 SPECT成像在肺癌患者远处转移的诊断、99mTc-3PRGD2 SPECT成像在肺癌患者化疗、靶向药物疗效评估等几个方面展开论述。

     

  • [1] Jin X, Liang N, Wang M, et al. Integrin Imaging with 99mTc-3PRGD2 SPECT/CT Shows High Specificity in the Diagnosis of Lymph Node Metastasis from non-small cell lung cancer[J]. Radiology, 2016, 29: 150-63. http://www.researchgate.net/profile/Yunxiao_Meng/publication/305779770_Integrin_Imaging_with_99mTc-3PRGD2_SPECTCT_Shows_High_Specificity_in_the_Diagnosis_of_Lymph_Node_Metastasis_from_Non-Small_Cell_Lung_Cancer/links/584bf78608aeb989251f229b.pdf
    [2] Chen J, Jin G, Yan L, et al. Association between integrin αvβ3 expression and malignancy lymph node metastasis: a meta-analysis[J]. Biomed Res, 2017, 28: 2946-51. http://www.biomedres.info/abstract/association-between-integrin-alphavbeta3-expression-and-malignancy-lymph-node-metastasis-a-metaanalysis-6949.html
    [3] Yue N, Yuan SH, Yang GR. Status and advances of RGD molecular imaging in lung cancer[J]. Zhongguo Fei Ai Za Zhi, 2014, 17(12): 855-9. http://www.lungca.org/index.php?journal=01&page=article&op=download&path[]=10.3779/j.issn.1009-3419.2014.12.06&path[]=4963
    [4] Beer AJ, Haubner R, Goebel M, et al. Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-galacto-RGD in cancer patients[J]. J Nucl Med, 2005, 46: 1333-41. http://jnm.snmjournals.org/content/46/8/1333.full.pdf
    [5] Beer AJ, Haubner R, Sarbia M, et al. Positron emission tomography using [18F] galacto-RGD identifies the level of integrin αvβ3 expression in man[J]. Clin Cancer Res, 2006, 12: 3942-9. doi: 10.1158/1078-0432.CCR-06-0266
    [6] McParland BJ, Miller MP, Spinks TJ, et al. The biodistribution and radiation dosimetry of the Arg-Gly-Asp peptide 18F-AH111585 in healthy volunteers[J]. J Nucl Med, 2008, 49: 1664-7. doi: 10.2967/jnumed.108.052126
    [7] Kenny LM, Coombes RC, Oulie I, et al. Phase I trial of the positron-emitting Arg-Gly-Asp peptide radioligand 18F-AH111585 in breast cancer patients[J]. J Nucl Med, 2008, 49: 879-86. doi: 10.2967/jnumed.107.049452
    [8] Bach-Gansmo T, Danielsson R, Saracco A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692[J]. J Nucl Med, 2006, 47(9): 1434-9. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FC0A2C5E226EADE14AA66ED57AD25943?doi=10.1.1.492.6888&rep=rep1&type=pdf
    [9] Axelsson R, Bach-Gansmo T, Castell-Conesa J, et al. A study to assess the feasibility of imaging metastases in late-stage cancer patients with the αvβ3-selective angiogenesis imaging agent 99mTc-NC100692[J]. Acta Radiol, 2010, 51: 40-6. doi: 10.3109/02841850903273974
    [10] Liu Z, Li ZB, Cao Q, et al. Small-animal PET of tumors with (64) Culabeled RGD-bombesin heterodimer[J]. Nucl Med, 2009, 50(7): 1168-77. doi: 10.2967/jnumed.108.061739
    [11] Cheng G, Gao S, Ji T, et al. Pharmacokinetics and radiation dosimetry of 99mTc-3PRGD2 in healthy individuals: a pilot study[J]. Nuclear Sci Techniques, 2012, 23: 349-54. http://www.j.sinap.ac.cn/nst/CN/article/downloadArticleFile.do?attachType=PDF&id=79
    [12] 胡骥, 陈宝军, 梁积新, 等. αvβ3受体显像剂99Tcm(N)(PNP6)(Cys-RGD)的制备及动物实验[J]. 同位素, 2007, 20(1): 5-11. doi: 10.3969/j.issn.1000-7512.2007.01.002
    [13] 陈宝军, 胡骥, 梁积新, 等. αvβ3受体显像剂99Tcm(N)(PNP6)(Cys-RGD)的制备及动物实验[J]. 同位素, 2007, 20(1): 5-10. doi: 10.3969/j.issn.1000-7512.2007.01.002
    [14] Shi J, Wang L, Kim YS, et al. Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-Glycine-aspartic (RGD) dimers with triglycine linkers[J]. J Med Chem, 2008, 51 (24): 7980-90. doi: 10.1021/jm801134k
    [15] Liu Z, Jia B, Shi J, et al. Tumor uptake of the RGD dimeric probe 99mTc-G3-2P4-RGD2 is correlated with integrin aVb3 expressed on both tumor cells and neo-vasculature[J]. Bioconjug Chem, 2010, 21: 548-55. doi: 10.1021/bc900547d
    [16] Zhou Y, Kim YS, Chakraborty S, et al. 99mTc-labeled cyclic RGD peptides for noninvasive monitoring of tumor integrin aVb3 expression[J]. Mol Imaging, 2011, 10: 386-97. http://smartsearch.nstl.gov.cn/paper_detail.html?id=41496248e1c0512258637a27167924cb
    [17] Jia B, Liu Z, Zhu Z, et al. Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin αvβ3-selective radiotracer 99mTc-3PRGD 2 in non-human Primates[J]. Mol Imaging Biol, 2011, 13(4): 730-6. doi: 10.1007/s11307-010-0385-y
    [18] Ma Q, Ji B, Jia B, et al. Differential diagnosis of solitary pulmonary nodules using 99mTc-3P4-RGD2 scintigraphy[J]. Eur J Nucl Med Mol Imaging, 2011, 38: 2145-52. doi: 10.1007/s00259-011-1901-2
    [19] Fukumura D, Jain RK. Imaging angiogenesis and the microenvironment[J]. APMIS, 2008, 116(7/8): 695-715. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859845/pdf/nihms193986.pdf
    [20] 马扬. 非小细胞肺癌~(99m)Tc-3PRGD_2 SPECT/CT显像与整合素αvβ3表达的相关性研究[D]. 银川: 宁夏医科大学, 2019.
    [21] NIU LY, LI J, JIA B, et al. Determination of biodistribution of 99mTc-3PRGD2 in mice bearing the lung carcinoma xenograft by γ counter[J]. IntPharmRes, 2017, 44(8): 705-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYZ201708011.htm
    [22] Liu ZF, Wang F. Dual-targeted molecular probes for cancer imaging[J]. Curr Pharm Biotechnol, 2010, 11(6): 610-9. doi: 10.2174/138920110792246546
    [23] 贺呈祥. 肺占位~(99m)Tc-3PRGD_2 SPECT/CT显像与胸部薄层CT显像的对比研究[D]. 银川: 宁夏医科大学, 2017.
    [24] Antonov AS, Antonova GN, Munn DH, et al. αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation[J]. J Cell Physiol, 2011, 226(2): 469-76. doi: 10.1002/jcp.22356
    [25] Zhang Z, Zhao X, Ding C, et al. (99m)Tc-3PRGD2 SPECT/CT imaging for monitoring early response of EGFR-TKIs therapy in patients with advanced-stage lung adenocarcinoma[J]. Cancer Biother Radiopharm, 2016, 31(7): 238-45. doi: 10.1089/cbr.2016.2052
    [26] Tournoy KG, Keller SM, Annema JT. Mediastinal staging of lung cancer: novel concepts[J]. Lancet Oncol, 2012, 13(5): e221-9. doi: 10.1016/S1470-2045(11)70407-7
    [27] Iskender I, Kapicibasi HO, Kadioglu SZ, et al. Comparison of integrated positron emission tomography/computed tomography and mediastinoscopy in mediastinal staging of non-small cell lung cancer: analysis of 212 patients[J]. Acta Chir Belg, 2012, 112(3): 219-25. doi: 10.1080/00015458.2012.11680827
    [28] van den Hoogen C, van der Horst G, Cheung H, et al. Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer[J]. Am J Pathol, 2011, 179(5): 2559-68. doi: 10.1016/j.ajpath.2011.07.011
    [29] Lv N, Gao S, Bai L, et al. Advantages of 99mTc-3PRGD2 SPECT over CT in the preoperative assessment of lymph node metastasis in patients with esophageal cancer[J]. Ann Nucl Med, 2019, 33(1): 39-46. doi: 10.1007/s12149-018-1300-x
    [30] GAO SM, Qingjie W, Qiang J, et al. 99mTc-3P_4-RGD_2 radiotracers for SPECT/CT of esophageal tumor[J]. Nucl Sci Tech, 2013, 24(4): 38-43. http://en.cnki.com.cn/Article_en/CJFDTotal-HKXJ201304008.htm
    [31] Miao W, Zheng S, Dai H, et al. Comparison of 99mTc-3PRGD2 integrin receptor imaging with 99mTc-MDP bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study[J]. PLoS One, 2014, 9(10): e111221-9. doi: 10.1371/journal.pone.0111221
    [32] 张召奇, 赵新明. 18F-FDG PET/CT和99mTc-3PRGD2 SPECT/CT评价晚期肺腺癌靶向治疗及化疗早期疗效的临床研究[D]. 河北: 河北医科大学, 2018.
    [33] 吴建国. 99mTc-3PRGD2生物代谢分布及其在化疗效果监测中的潜在价值[D]. 上海: 上海交通大学, 2014.
    [34] Rayson D, Vantyghem SA, Chambers AF. Angiogenesis as a target for breast cancer therapy[J]. J Mammary Gland Biol Neoplasia, 1999, 4(4): 415-23. doi: 10.1023/A:1018774618873
    [35] Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target[J]. Nature, 2005, 438(7070): 967-74. doi: 10.1038/nature04483
    [36] Rodgers M, Soares M, Epstein D, et al. Bevacizumab in combination with a taxane for the first-line treatment of HER2-negative metastatic breast cancer[J]. Health Technol Assess, 2011, 15(Suppl 1): 1-12. doi: 10.3310/hta15suppl1-01
    [37] Sheng J, Yang YP, Yang BJ, et al. Efficacy of addition of antiangiogenic agents to taxanes-containing chemotherapy in advanced nonsmall-cell lung cancer: A meta-analysis and systemic review[J]. Medicine (Baltimore), 2015, 94: 12-82.
    [38] Lee SM, Baas P, Wakelee H. Anti-angiogenesis drugs in lung cancer[J]. Respirology, 2010, 15(3): 387-92. doi: 10.1111/j.1440-1843.2010.01715.x
    [39] Chen B, Zhang W, Ji B, et al. Integrin αVβ3-targeted SPECT/CT for the assessment of Bevacizumab therapy in orthotopic lung cancer xenografts[J]. Oncol Lett, 2018, 15(4): 4201-6. http://www.onacademic.com/detail/journal_1000040552560710_3d6e.html
    [40] Morrison MS, Ricketts SA, Barnett J, et al. Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy[J]. J Nucl Med, 2009, 50(1): 116-22. doi: 10.2967/jnumed.108.056077
    [41] Battle MR, Goggi JL, Allen L, et al. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled αvβ3-integrin and αvβ5-integrin imaging agent[J]. Nucl Med, 2011, 52: 424-30. doi: 10.2967/jnumed.110.077479
    [42] Sun X, Yan Y, Liu S, et al. 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy[J]. J Nucl Med, 2011, 52(1): 140-6. doi: 10.2967/jnumed.110.080606
  • 加载中
计量
  • 文章访问数:  523
  • HTML全文浏览量:  163
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-25
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回