留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

肺炎X光图像增强分类识别技术:基于改进Retinex算法

刘海龙 马波

刘海龙, 马波. 肺炎X光图像增强分类识别技术:基于改进Retinex算法[J]. 分子影像学杂志, 2021, 44(5): 739-743. doi: 10.12122/j.issn.1674-4500.2021.05.02
引用本文: 刘海龙, 马波. 肺炎X光图像增强分类识别技术:基于改进Retinex算法[J]. 分子影像学杂志, 2021, 44(5): 739-743. doi: 10.12122/j.issn.1674-4500.2021.05.02
LIU Hailong, MA Bo. Pneumonia X-ray images enhance classification recognition technology: Based on improved Retinex algorithm[J]. Journal of Molecular Imaging, 2021, 44(5): 739-743. doi: 10.12122/j.issn.1674-4500.2021.05.02
Citation: LIU Hailong, MA Bo. Pneumonia X-ray images enhance classification recognition technology: Based on improved Retinex algorithm[J]. Journal of Molecular Imaging, 2021, 44(5): 739-743. doi: 10.12122/j.issn.1674-4500.2021.05.02

肺炎X光图像增强分类识别技术:基于改进Retinex算法

doi: 10.12122/j.issn.1674-4500.2021.05.02
基金项目: 

陕西省教育厅科研计划项目 20JS123

详细信息
    作者简介:

    刘海龙,博士,讲师,E-mail: Liuhailong@xsyu.edu.cn

    通讯作者:

    马波,硕士,E-mail: 18829509795@163.com

Pneumonia X-ray images enhance classification recognition technology: Based on improved Retinex algorithm

  • 摘要:   目的  引入并改进Retinex算法增强肺图像特征,提升肺炎识别的准确率。  方法  提出一种对肺炎X光图像特征增强的Retinex优化方法。将X光图边缘中心化,进行信息重建,利用Retinex进行特征强化,最后将图像赋予权重与原图像相结合,最大程度保留特征。  结果  相对于初始图像训练,其准确率提升了2.57个百分点,损失了0.17个百分点的敏感度准确率,却增加了7.15个百分点的特异性准确率。  结论  改进后的算法能够使得机器快速自动识别肺炎与非肺炎,在肺炎高发的时期大大提升了诊断效率。

     

  • 图  1  图像重建对比结果

    A:正常肺部初始图像;B:患肺炎肺部初始图像;C:正常肺部重建图像;D:患肺炎肺部重建图像.

    Figure  1.  Image reconstruction contrast results.

    图  2  Retinex算法处理流程图

    Figure  2.  The flowchart of Retinex algorithm processe.

    图  3  Retinex算法特征强化结果

    A:肺部重建强化图像;B:肺炎重建强化图像.

    Figure  3.  Retinex algorithm feature-enhanced results.

    图  4  图像融合效果图

    Figure  4.  Image fusion effect map.

    图  5  算法图像处理对比图

    A:原始图像;B:SSR算法处理;C:改进算法处理

    Figure  5.  Algorithmic image processing comparison diagram.

    表  1  Chest X-Ray Images数据集分布

    Table  1.   Distribution of chest X-ray images dataset

    数据集 普通肺部图像 肺炎图像 合计
    训练集 1341 3875 5216
    测试集 234 390 624
    下载: 导出CSV

    表  2  Inception V3网络架构

    Table  2.   Network architecture of Inception V3

    类型 Patch size/stride Or remark Input size
    Conv 3x3/2 299x299x3
    Conv 3x3/1 149x149x32
    Conv padded 3x3/1 147x147x32
    Pool 3x3/2 147x147x64
    Conv 3x3/1 73x73x64
    Conv 3x3/2 71x71x80
    Conv 3x3/1 35x35x192
    3xInception 35x35x288
    5xInception 7x17x768
    2xInception 8x8x1280
    Pool 8x8 8x8x2048
    Linear Logits 1x1x2048
    Softmax Classifier 1x1x1000
    下载: 导出CSV

    表  3  Inception V3网络第1次训练结果对比

    Table  3.   Comparison of the first training results of Inception V3 network

    算法种类 准确性 特异性 敏感度
    未使用 0.8766 0.7051 0.9795
    SSR 0.8910 0.7436 0.9795
    改进SSR 0.9779 0.7906 0.9846
    下载: 导出CSV

    表  4  Inception V3网络第2次训练结果对比

    Table  4.   Comparison of the second training results of Inception V3 network

    算法种类 准确性 特异性 敏感度
    未使用 0.8798 0.7308 0.9692
    SSR 0.8798 0.7094 0.9861
    改进SSR 0.9038 0.8077 0.9615
    下载: 导出CSV

    表  5  Inception V3网络第3次训练结果对比

    Table  5.   Comparison of the third training results of Inception V3 network

    算法种类 准确性 特异性 敏感度
    未使用 0.9038 0.8162 0.9564
    SSR 0.8958 0.7949 0.9564
    改进SSR 0.9215 0.8675 0.9538
    下载: 导出CSV

    表  6  Inception V3网络训练结果平均值

    Table  6.   Average value of network training results of perception V3

    算法种类 准确性 特异性 敏感度
    未使用 0.9038 0.8162 0.9564
    SSR 0.8958 0.7949 0.9564
    改进SSR 0.9215 0.8675 0.9538
    下载: 导出CSV
  • [1] 唐丽. D-二聚体与肺炎病情评估的相关性[J]. 内蒙古医学杂志, 2017, 49(8): 929-31. https://www.cnki.com.cn/Article/CJFDTOTAL-NMYZ201708013.htm
    [2] 邓棋, 雷印杰, 田锋. 用于肺炎图像分类的优化卷积神经网络方法[J]. 计算机应用, 2020, 40(1): 71-6. doi: 10.3969/j.issn.1005-8451.2020.01.014
    [3] Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-31. e9. doi: 10.1016/j.cell.2018.02.010
    [4] Vianna VP. Study and development of a computer-aided diagnosis system for classification of chest Xray images using convolutional neural networks pretrained for ImageNet and data augmentation [EB/OL]. [2018-09-16]. https://arxiv.org/pdf/1806.00839v1.pdf.
    [5] 何新宇, 张晓龙. 基于深度神经网络的肺炎图像识别模型[J]. 计算机应用, 2019, 39(6): 1680-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201906022.htm
    [6] Kumar M, Gupta R, Raju KS, et al. Modified local binary pattern algorithm for feature dimensionality reduction[J]. Recent Adv Comput Sci Commun, 2021, 14(3): 934-40. doi: 10.2174/2213275912666190730160705
    [7] 张亮, 王齐凯. 基于bp神经网络的肺炎分类[J]. 华南理工大学学报(自然科学版), 2015, 42(1): 72-6. doi: 10.3969/j.issn.1000-565X.2015.01.012
    [8] Zhao G, Ahonen T, Matas J, et al. Rotation invariant image and video description with local binary pattern features[J]. IEEE T Image Process, 2011, 21(4): 1465-77 http://www.facweb.iitkgp.ernet.in/~debdoot/courses/EE60062/Aut2014/LBP.pdf
    [9] 朱珍, 万志平, 蒋鹏. 改进单尺度retinex的复杂光照人脸识别算法[J]. 计算机应用与软件, 2014, 31(3): 246-9, 262. doi: 10.3969/j.issn.1000-386x.2014.03.065
    [10] Shrivastava J, Verma GS. Retinex Theory for Image Enhancement [J]. Res J Engi Tech, 2010, 1(2): 55-7. http://indianjournals.com/ijor.aspx?target=ijor:rjet&volume=1&issue=2&article=001
    [11] 朱炼, 孙枫, 夏芳莉, 等. 图像融合研究综述[J]. 传感器与微系统, 2014, 33(2): 14-8. doi: 10.3969/j.issn.1000-9787.2014.02.004
    [12] Perdomo O, Rios H, Rodríguez FJ, et al. Classification of diabetesrelated retinal diseases using a deep learning approach in optical coherence tomography[J]. Comput Methods Programs Biomed, 2019, 178: 181-9. doi: 10.1016/j.cmpb.2019.06.016
    [13] Bhardwaj C, Jain S, Sood M. Diabetic retinopathy severity grading employing quadrant-based Inception-V3 convolution neural network architecture[J]. Int J Imaging Syst Technol, 2021, 31(2): 592-608. doi: 10.1002/ima.22510
    [14] 汪泉, 宋文龙, 张怡卓, 等. 基于改进VGG16网络的机载高光谱针叶树种分类研究[J]. 森林工程, 2021, 37(3): 79-87. doi: 10.3969/j.issn.1006-8023.2021.03.011
    [15] 刘长征, 相文波. 基于改进卷积神经网络的肺炎影像判别[J]. 计算机测量与控制, 2017, 25(4): 185-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201704051.htm
    [16] Liu YF, Shu CY, Wang JD, et al. Structured knowledge distillation for dense prediction[J]. IEEE Trans Pattern Anal Mach Intell, 1940, PP(99): 1. http://arxiv.org/abs/1903.04197v5
    [17] Shi T, Horvath S. Unsupervised learning with random forest predictors[J]. J Comput Graph Stat, 2006, 15(1): 118-38. doi: 10.1198/106186006X94072
    [18] Zhang WP, Chen YR, Yang WM, et al. Class-variant margin normalized softmax loss for deep face recognition[J]. IEEE Trans Neural Netw Learning Syst, 2020: 1-6. http://www.researchgate.net/publication/343957338_Class-Variant_Margin_Normalized_Softmax_Loss_for_Deep_Face_Recognition
    [19] Khorami E, Mahdi BF, Azadeh A. Optimal Diagnosis of COVID-19 Based on Convolutional Neural Network and Red Fox Optimization Algorithm[J]. Comput Intell Neurosci, 2021: 4454507. DOI: 10.1155/2021/4454507.
    [20] Khorami E, Mahdi Babaei F, Azadeh A. Optimal diagnosis of COVID-19 based on convolutional neural network and red fox optimization algorithm[J]. Comput Intell Neurosci, 2021, 2021: 1- 11.
    [21] Ballesterp, Araujo RM. On the performance of GoogLeNet and AlexNet applied to sketches[C]// AAAI 2016: Proceedings of the 2016 Thirtieth AAAI Conference on Artificial Intelligence, Menlo Park, CA: AAAI, 2016: 1124-8.
    [22] 闫鹏程, 尚松行, 张超银, 等. 改进BP神经网络算法对煤矿水源的分类研究[J]. 光谱学与光谱分析, 2021, 41(7): 2288-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202107056.htm
    [23] Parmar U, Pandya DH. Experimental investigation of cylindrical bearing fault diagnosis with SVM[J]. Mater Today: Proc, 2021, 44: 1286-90. doi: 10.1016/j.matpr.2020.11.327
    [24] Perlin HA, Lopes HS. Extracting human attributes using a convolutional neural network approach[J]. Pattern Recognit Lett, 2015, 68: 250-9. doi: 10.1016/j.patrec.2015.07.012
    [25] Zhang YJ. A Selection of Image Processing Techniques: From Fundamental to Research Front[M]. London. CRC Press: 2021.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  770
  • HTML全文浏览量:  343
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回