留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

动态功能连接分析在脑卒中近5年的应用现状

王宇 谭乔芮 张元 秦子玲 鲁海 张春红

王宇, 谭乔芮, 张元, 秦子玲, 鲁海, 张春红. 动态功能连接分析在脑卒中近5年的应用现状[J]. 分子影像学杂志, 2021, 44(4): 714-717. doi: 10.12122/j.issn.1674-4500.2021.04.28
引用本文: 王宇, 谭乔芮, 张元, 秦子玲, 鲁海, 张春红. 动态功能连接分析在脑卒中近5年的应用现状[J]. 分子影像学杂志, 2021, 44(4): 714-717. doi: 10.12122/j.issn.1674-4500.2021.04.28
Yu WANG, Qiaorui TAN, Yuan ZHANG, Ziling QIN, Hai LU, Chunhong ZHANG. The application status of dynamic functional network connectivity in stroke in recent 5 years[J]. Journal of Molecular Imaging, 2021, 44(4): 714-717. doi: 10.12122/j.issn.1674-4500.2021.04.28
Citation: Yu WANG, Qiaorui TAN, Yuan ZHANG, Ziling QIN, Hai LU, Chunhong ZHANG. The application status of dynamic functional network connectivity in stroke in recent 5 years[J]. Journal of Molecular Imaging, 2021, 44(4): 714-717. doi: 10.12122/j.issn.1674-4500.2021.04.28

动态功能连接分析在脑卒中近5年的应用现状

doi: 10.12122/j.issn.1674-4500.2021.04.28
基金项目: 

国家重点研发计划项目-政府间国际科技创新合作重点专项 2018YFE0181700

详细信息
    作者简介:

    王宇,在读博士研究生,E-mail: wangyu28350@126.com

    通讯作者:

    张春红,博士,教授,主任医师,E-mail: drzch1113@163.com

The application status of dynamic functional network connectivity in stroke in recent 5 years

  • 摘要: 脑卒中是一种影响脑网络的疾病,功能磁共振成像技术广泛用于研究卒中损伤后大脑的功能变化和网络重组。动态功能连接是一种新兴的分析方法,用以表征静息状态下大脑功能连接的动态特性。动态功能连接在近5年应用于脑卒中领域,主要用于探索全脑不同网络、感觉运动网络以及语言网络的功能连接属性。研究表明卒中发生后大脑网络功能连接呈现一些重复出现的密集或稀疏的连接状态并具有不同的时间变异特征,为研究脑卒中提供了新的视角,具有潜在的优势。本研究主要综述动态功能连接在脑卒中的应用现状,包括卒中后全脑网络研究、感觉运动网络研究、语言网络研究等方面。

     

  • [1] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537-41. doi: 10.1002/mrm.1910340409
    [2] Hindriks R, Adhikari MH, Murayama Y, et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?[J]. Neuroimage, 2016, 127(2): 242-56. http://www.sciencedirect.com/science/article/pii/S1053811916001142
    [3] Filippi M, Spinelli EG, Cividini C, et al. Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings[J]. Front Neurosci, 2019, 13(13): 657. http://www.researchgate.net/publication/333911416_Resting_State_Dynamic_Functional_Connectivity_in_Neurodegenerative_Conditions_A_Review_of_Magnetic_Resonance_Imaging_Findings
    [4] Hidalgo de la Cruz M, Valsasina P, Sangalli F, et al. Dynamic functional connectivity in the main clinical phenotypes of multiple sclerosis[J]. Brain Connect, 2021. DOI: 10.1089/brain.2020.0920
    [5] Sendi MSE, Zendehrouh E, Ellis CA, et al. Aberrant dynamic functional connectivity of default mode network in schizophrenia and links to symptom severity[J]. Front Neural Circuits, 2021, 15: 649417. doi: 10.3389/fncir.2021.649417
    [6] Sendi MSE, Zendehrouh E, Sui J, et al. Aberrant dynamic functional connectivity of default mode network predicts symptom severity in major depressive disorder[J]. Brain Connect, 2021. DOI: 10.1089/ brain.2020.0748.
    [7] Shappell HM, Duffy KA, Rosch KS, et al. Children with attention-deficit/hyperactivity disorder spend more time in hyperconnected network states and less time in segregated network states as revealed by dynamic connectivity analysis[J]. NeuroImage, 2021, 229: 117753. doi: 10.1016/j.neuroimage.2021.117753
    [8] Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394 (10204): 1145-58. doi: 10.1016/S0140-6736(19)30427-1
    [9] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-22. http://www.sciencedirect.com/science/article/pii/S0140673620309259?via%3Dihub
    [10] Hallett M, de Haan W, Deco G, et al. Human brain connectivity: Clinical applications for clinical neurophysiology[J]. Clin Neurophysiol, 2020, 131(7): 1621-51. doi: 10.1016/j.clinph.2020.03.031
    [11] Mirzaei G, Adeli H. Resting state functional magnetic resonance imaging processing techniques in stroke studies[J]. Rev Neurosci, 2016, 27(8): 871-85. doi: 10.1515/revneuro-2016-0052
    [12] Murray L, Maurer JM, Peechatka AL, et al. Sex differences in functional network dynamics observed using coactivation pattern analysis[J]. Cogn Neurosci, 2021: 1-10.
    [13] Rosenberg BM, Mennigen E, Monti MM, et al. Functional segregation of human brain networks across the lifespan: an exploratory analysis of static and dynamic resting-state functional connectivity[J]. Front Neurosci, 2020, 14: 561594. doi: 10.3389/fnins.2020.561594
    [14] 杨剑, 陈书燊, 皇甫浩然, 等. 静息态脑电信号动态功能连接分析[J]. 物理学报, 2015, 64(5): 058701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201505052.htm
    [15] Hutchison RM, Womelsdorf T, Allen EA, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-78. doi: 10.1016/j.neuroimage.2013.05.079
    [16] 陈芷涵, 王容, 李郁欣, 等. 功能磁共振成像动态脑功能连接网络分析方法及其在脑疾病中的应用[J]. 中国临床神经科学, 2020, 28(5): 571-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSK202005018.htm
    [17] Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives[J]. Neuroimage, 2017, 160: 41-54. doi: 10.1016/j.neuroimage.2016.12.061
    [18] Faghiri A, Damaraju E, Belger A, et al. Brain density clustering analysis: a new approach to brain functional dynamics[J]. Front Neurosci, 2021, 15: 621716. doi: 10.3389/fnins.2021.621716
    [19] Fan L, Zhong Q, Qin J, et al. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics[J]. Hum Brain Mapp, 2021, 42(5): 1416-33. doi: 10.1002/hbm.25303
    [20] Wang C, Qin W, Zhang J, et al. Altered functional organization within and between resting-state networks in chronic subcortical infarction[J]. J Cereb Blood Flow Metab, 2014, 34(4): 597-605. doi: 10.1038/jcbfm.2013.238
    [21] Zhao Z, Wu J, Fan M, et al. Altered intra- and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke[J]. Hum Brain Mapp, 2018, 39(8): 3388-97. doi: 10.1002/hbm.24183
    [22] Baldassarre A, Ramsey LE, Siegel JS, et al. Brain connectivity and neurological disorders after stroke[J]. Curr Opin Neurol, 2016, 29 (6): 706-13. doi: 10.1097/WCO.0000000000000396
    [23] Wang Y, Wang C, Miao P, et al. An imbalance between functional segregation and integration in patients with pontine stroke: a dynamic functional network connectivity study[J]. Neuroimage Clin, 2020, 28(2): 102507. http://www.sciencedirect.com/science/article/pii/S2213158220303442
    [24] Hu J, Du J, Xu Q, et al. Dynamic network analysis reveals altered temporal variability in brain regions after stroke: a longitudinal resting-state fMRI study[J]. Neural Plast, 2018, 2018: 9394156. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907391/
    [25] Bonkhoff AK, Espinoza FA, Gazula H, et al. Acute ischaemic stroke alters the brain's preference for distinct dynamic connectivity states[J]. Brain, 2020, 143(5): 1525-40. doi: 10.1093/brain/awaa101
    [26] Bonkhoff AK, Schirmer MD, Bretzner M, et al. Abnormal dynamic functional connectivity is linked to recovery after acute ischemic stroke[J]. Hum Brain Mapp, 2021, 42(7): 2278-91. doi: 10.1002/hbm.25366
    [27] Chen J, Sun DL, Shi YH, et al. Alterations of static functional connectivity and dynamic functional connectivity in motor execution regions after stroke[J]. Neurosci Lett, 2018, 686(12): 112-21.
    [28] Wang X, Wong WW, Sun R, et al. Differentiated effects of robot hand training with and without neural guidance on neuroplasticity patterns in chronic stroke[J]. Front Neurol, 2018, 9(1): 810. http://www.ncbi.nlm.nih.gov/pubmed/30349505
    [29] Klingbeil J, Wawrzyniak M, Stockert A, et al. Resting-state functional connectivity: an emerging method for the study of language networks in post-stroke aphasia[J]. Brain Cogn, 2019, 131 (1): 22-33. http://www.sciencedirect.com/science/article/pii/S0278262617301070
    [30] Guo J, Biswal BB, Han S, et al. Altered dynamics of brain segregation and integration in poststroke aphasia[J]. Hum Brain Mapp, 2019, 40 (11): 3398-409. http://www.ncbi.nlm.nih.gov/pubmed/31016854
    [31] Duncan ES, Small SL. Changes in dynamic resting state network connectivity following aphasia therapy[J]. Brain Imaging Behav, 2018, 12(4): 1141-9. http://europepmc.org/abstract/MED/29064020
    [32] Cordani C, Valsasina P, Preziosa P, et al. Action observation training promotes motor improvement and modulates functional network dynamic connectivity in multiple sclerosis[J]. Mult Scler, 2021, 27 (1): 139-46. http://www.researchgate.net/publication/337043227_Action_observation_training_promotes_motor_improvement_and_modulates_functional_network_dynamic_connectivity_in_multiple_sclerosis
  • 加载中
计量
  • 文章访问数:  327
  • HTML全文浏览量:  149
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日