留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

分子影像学:前沿技术及应用研究

林盼盼 贾岩龙 黄淮栋 黄恺 吴仁华

林盼盼, 贾岩龙, 黄淮栋, 黄恺, 吴仁华. 分子影像学:前沿技术及应用研究[J]. 分子影像学杂志, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27
引用本文: 林盼盼, 贾岩龙, 黄淮栋, 黄恺, 吴仁华. 分子影像学:前沿技术及应用研究[J]. 分子影像学杂志, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27
Panpan LIN, Yanlong JIA, Huaidong HUANG, Kai HUANG, Renhua WU. Molecular imaging: frontier technology and application[J]. Journal of Molecular Imaging, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27
Citation: Panpan LIN, Yanlong JIA, Huaidong HUANG, Kai HUANG, Renhua WU. Molecular imaging: frontier technology and application[J]. Journal of Molecular Imaging, 2021, 44(4): 710-713. doi: 10.12122/j.issn.1674-4500.2021.04.27

分子影像学:前沿技术及应用研究

doi: 10.12122/j.issn.1674-4500.2021.04.27
基金项目: 

国际(地区)合作与交流项目 82020108016

国家自然科学基金 31870981

广东省高水平大学建设计划临床医学重点建设学科专项资金 002-18120302

详细信息
    作者简介:

    林盼盼,硕士,医师,E-mail: newlife_quanzhou@163.com

    贾岩龙,博士,主治医师,E-mail: yanlongjia@163.com

    通讯作者:

    吴仁华,博士,教授,主任医师,博士生导师,E-mail: cjr.wurenhua@vip.163.com

Molecular imaging: frontier technology and application

  • 摘要: 近年来,随着纳米生物医学的进步和光学成像技术的兴起,分子影像学呈现出与材料学、化学、医用物理学、生物医学工程和基因组学等多个学科紧密融合的发展态势,基于纳米技术的新型分子显像剂迅速发展,以小分子、肽、抗体和适体修饰的纳米粒子已广泛应用于临床前研究和临床转化,分子影像技术在临床诊疗中有重大突破并取得一系列研究成果。多模态分子成像技术在精准诊疗中崭露头角,新一轮成像技术的升级能获取更多组织和分子层面的信息,进一步促进学科之间的交叉融合。本文着重从光学和光声分子影像、磁共振分子影像和正电子发射断层扫描分子影像3个方面的前沿技术和临床应用做一综述。

     

  • [1] Liu YX, Zhu XJ, Wei Z, et al. Customized photothermal therapy of subcutaneous orthotopic cancer by multichannel luminescent nanocomposites[J]. Adv Mater, 2021: 2008615. doi: 10.1002/adma.202008615
    [2] Guo F, Capaldi DP, McCormack DG, et al. Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift[J]. Med Image Anal, 2021, 72: 102107. doi: 10.1016/j.media.2021.102107
    [3] Sermesant M, Delingette H, Cochet H, et al. Applications of artificial intelligence in cardiovascular imaging[J]. Nat Rev Cardiol, 2021: 1-10. http://www.nature.com/articles/s41569-021-00527-2
    [4] Ahmed MA, Williams P. Diagnosis of vascular catastrophe using optical coherence tomography[J]. Eur Heart J, 2021. DOI:10.1093/ eurheartj/ehab194.
    [5] Sakai S, Sato A, Hoshi T, et al. In vivo evaluation of coronary arteritis by serial optical coherence tomography in large vessel vasculitis[J]. Eur Heart J, 2020. DOI: 10.1093/eurheartj/ehaa991.
    [6] Wu YL, Zeng F, Zhao YL, et al. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications[J]. Chem Soc Rev, 2021, 32. DOI: 10.1039/d1cs00358e.
    [7] Yang G, Huang HB, Luo HB, et al. Fiber endface photoacoustic generator for quantitative photoacoustic tomography[J]. Opt Lett, 2021, 46(11): 2706-9. doi: 10.1364/OL.426033
    [8] Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-62. doi: 10.1126/science.1216210
    [9] Chen J, Qi J, Chen C, et al. Tocilizumab-conjugated polymer nanoparticles for NIR-Ⅱ photoacoustic-imaging-guided therapy of rheumatoid arthritis[J]. Adv Mater, 2020, 32(37): e2003399. doi: 10.1002/adma.202003399
    [10] Karlas A, Pleitez MA, Aguirre J, et al. Optoacoustic imaging in endocrinology and metabolism[J]. Nat Rev Endocrinol, 2021, 17 (6): 323-35. doi: 10.1038/s41574-021-00482-5
    [11] Qi S, Zhang YC, Liu GY, et al. Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-Ⅱ photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma[J]. Acta Biomater, 2021 http://www.sciencedirect.com/science/article/pii/S1742706121003445
    [12] Tang YF, Li YY, Hu XM, et al. Nanoprobes: "dual lock-and-key"-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window (adv. mater. 31/2018)[J]. Adv Mater, 2018, 30(31): 1870226. doi: 10.1002/adma.201870226
    [13] Zheng DY, Yu PW, Wei ZW, et al. RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy[J]. Nano Micro Lett, 2020, 12 (1): 1-17. doi: 10.1007/s40820-019-0337-2
    [14] Gossé LK, Bell SW, Hosseini SMH. Functional near-infrared spectroscopy in developmental psychiatry: a review of attention deficit hyperactivity disorder[J]. Eur Arch Psychiatry Clin Neurosci, 2021: 1-18. doi: 10.1007/s00406-021-01288-2
    [15] Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study[J]. Lancet, 2019, 394(10209): 1629-37. doi: 10.1016/S0140-6736(19)31794-5
    [16] Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up[J]. Eur Heart J, 2018, 39(4): 295-302. doi: 10.1093/eurheartj/ehx247
    [17] Wang XW, Zhong XY, Li JX, et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chem Soc Rev, 2021. DOI: 10.1039/d0cs00461h.
    [18] Smits M. MRI biomarkers in neuro-oncology[J]. Nat Rev Neurol, 2021: 1-15. http://www.researchgate.net/publication/352551711_MRI_biomarkers_in_neuro-oncology
    [19] Liang ZY, Wang QY, Liao HW, et al. Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging[J]. Nat Commun, 2021, 12: 3840. doi: 10.1038/s41467-021-24055-2
    [20] Fang H, Li M, Liu Q, et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer[J]. Nanomicro Lett, 2020, 12(1): 62.
    [21] Yi ZG, Luo ZC, Barth ND, et al. In vivo tumor visualization through MRI off-on switching of NaGdF 4 – CaCO 3 nanoconjugates[J]. Adv Mater, 2019, 31(37): 1901851. doi: 10.1002/adma.201901851
    [22] A R, Yao Y, Guo X, et al. Precise cancer anti-acid therapy monitoring using pH-sensitive MnO2@BSA nanoparticles by magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18604-18. doi: 10.1021/acsami.1c04310
    [23] Yan G, Zhang T, Dai Z, et al. A potential magnetic resonance imaging technique based on chemical exchange saturation transfer for in vivo γ-aminobutyric acid imaging[J]. PLoS One, 2016, 11 (10): e0163765. doi: 10.1371/journal.pone.0163765
    [24] Mao YF, Zhuang ZR, Chen YZ, et al. Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer[J]. Quant Imaging Med Surg, 2019, 9(10): 1652-63. doi: 10.21037/qims.2019.09.08
    [25] Chen P, Shen Z, Wang Q, et al. Reduced cerebral glucose uptake in an Alzheimer's rat model with glucose-weighted chemical exchange saturation transfer imaging[J]. Front Aging Neurosci, 2021, 13: 618690. doi: 10.3389/fnagi.2021.618690
    [26] Zhang J, Yuan Y, Gao M, et al. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents[J]. Angew Chem Int Ed Engl, 2019, 58(29): 9871-5. doi: 10.1002/anie.201904722
    [27] Ali MM, Liu G, Shah T, et al. Using two chemical exchange saturation transfer magnetic resonance imaging contrast agents for molecular imaging studies[J]. Acc Chem Res, 2009, 42(7): 915-24. doi: 10.1021/ar8002738
    [28] Jia YL, Wang CC, Zheng JH, et al. Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo[J]. J Nanobiotechnology, 2019, 17(1): 1-14. doi: 10.1186/s12951-018-0433-3
    [29] Jia YL, Geng K, Cheng Y, et al. Nanomedicine particles associated with chemical exchange saturation transfer contrast agents in biomedical applications[J]. Front Chem, 2020, 8: 326. doi: 10.3389/fchem.2020.00326
    [30] Chen L, van Zijl PCM, Wei ZL, et al. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging[J]. NeuroImage, 2021, 236: 118071. doi: 10.1016/j.neuroimage.2021.118071
    [31] Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β[J]. Sci Transl Med, 2012, 4 (147): 147ra111. http://europepmc.org/articles/PMC3551275
    [32] Kiviniemi V, Wang X, Korhonen V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-45. doi: 10.1177/0271678X15622047
    [33] Taoka T, Naganawa S. Neurofluid dynamics and the glymphatic system: a neuroimaging perspective[J]. Korean J Radiol, 2020, 21 (11): 1199-209. doi: 10.3348/kjr.2020.0042
    [34] Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11): 1016-24. doi: 10.1016/S1474-4422(18)30318-1
    [35] Nauen DW, Troncoso JC. Amyloid-beta is present in human lymph nodes and greatly enriched in those of the cervical region[J]. Alzheimer's Dement, 2021. DOI: 10.1002/alz.12385.
    [36] Chen YF, Dai ZZ, Fan RH, et al. Glymphatic system visualized by chemical-exchange-saturation-transfer magnetic resonance imaging[J]. ACS Chem Neurosci, 2020, 11(13): 1978-84. doi: 10.1021/acschemneuro.0c00222
    [37] Watts DP, Bordes J, Brown JR, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging[J]. Nat Commun, 2021, 12(1): 2646. doi: 10.1038/s41467-021-22907-5
    [38] Goodheart AE, Locascio JJ, Samore WR, et al. 18F-AV-1451 positron emission tomography in neuropathological substrates of corticobasal syndrome[J]. Brain, 2021, 144(1): 266-77. doi: 10.1093/brain/awaa383
    [39] Lindner S, Wängler C, Bailey JJ, et al. Radiosynthesis of[18F] SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography[J]. Nat Protoc, 2020, 15(12): 3827-43. doi: 10.1038/s41596-020-00407-y
    [40] Ordonez AA, Wintaco LM, Mota F, et al. Imaging Enterobacterales infections in patients using pathogen-specific positron emission tomography[J]. Sci Transl Med, 2021, 13(589): 9805. doi: 10.1126/scitranslmed.abe9805
    [41] Sun XL, Cai WB, Chen XY. Positron emission tomography imaging using radiolabeled inorganic nanomaterials[J]. Acc Chem Res, 2015, 48(2): 286-94. doi: 10.1021/ar500362y
    [42] Lee E, Kamlet AS, Powers DC, et al. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging[J]. Science, 2011, 334(6056): 639-42. doi: 10.1126/science.1212625
    [43] Jong MD, Breeman WAP, Kwekkeboom DJ, et al. Tumor imaging and therapy using radiolabeled somatostatin analogues[J]. Acc Chem Res, 2009, 42(7): 873-80. doi: 10.1021/ar800188e
    [44] Cottereau AS, Meignan M, Nioche C, et al. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT[J]. Ann Oncol, 2021, 32(3): 404-11. doi: 10.1016/j.annonc.2020.11.019
    [45] Mu W, Jiang L, Zhang J, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics[J]. Nat Commun, 2020, 11(1): 5228. doi: 10.1038/s41467-020-19116-x
    [46] Casas Deza D, Sierra Gabarda O, De Los Mozos Ruano A, et al. Positron emission tomography/computed tomography-based diagnosis of endotipsitis[J]. Am J Gastroenterol, 2021, 116(6): 1118. doi: 10.14309/ajg.0000000000000950
    [47] Steinberg J, Thomas A, Iravani A. 18F-fluorodeoxyglucose PET/ CT findings in a systemic inflammatory response syndrome after COVID-19 vaccine[J]. Lancet, 2021, 397(10279): e9. doi: 10.1016/S0140-6736(21)00464-5
    [48] Miller MA, Adams DH, Pandis D, et al. Hybrid positron emission tomography/magnetic resonance imaging in arrhythmic mitral valve prolapse[J]. JAMA Cardiol, 2020, 5(9): 1000. doi: 10.1001/jamacardio.2020.1555
    [49] James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev, 2012, 92(2): 897-965. doi: 10.1152/physrev.00049.2010
    [50] Wang C, Fan W, Zhang Z, et al. Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy[J]. Adv Mater, 2019, 31(49): e1904329. doi: 10.1002/adma.201904329
    [51] Gupta S, Ge Y, Singh A, et al. Multimodality imaging assessment of myocardial fibrosis[J]. JACC: Cardiovasc Imaging, 2021 http://www.sciencedirect.com/science/article/pii/S1936878X21001510
    [52] Gan J, Peng Z, Zhu X, et al. Brain functional connectivity analysis based on multi-graph fusion[J]. Med Image Anal, 2021, 71: 102057. doi: 10.1016/j.media.2021.102057
  • 加载中
计量
  • 文章访问数:  2033
  • HTML全文浏览量:  419
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回