留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

光声成像在肿瘤诊断和治疗中的研究进展

罗玥媛 保莎莎 郭效宾 杨军 廖承德

罗玥媛, 保莎莎, 郭效宾, 杨军, 廖承德. 光声成像在肿瘤诊断和治疗中的研究进展[J]. 分子影像学杂志, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37
引用本文: 罗玥媛, 保莎莎, 郭效宾, 杨军, 廖承德. 光声成像在肿瘤诊断和治疗中的研究进展[J]. 分子影像学杂志, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37
Yueyuan LUO, Shasha BAO, Xiaobin GUO, Jun YANG, Chengde LIAO. Research progress of photoacoustic imaging in tumor[J]. Journal of Molecular Imaging, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37
Citation: Yueyuan LUO, Shasha BAO, Xiaobin GUO, Jun YANG, Chengde LIAO. Research progress of photoacoustic imaging in tumor[J]. Journal of Molecular Imaging, 2021, 44(2): 400-404. doi: 10.12122/j.issn.1674-4500.2021.02.37

光声成像在肿瘤诊断和治疗中的研究进展

doi: 10.12122/j.issn.1674-4500.2021.02.37
基金项目: 

国家自然科学基金 81760316

国家自然科学基金 81703155

云南省医学学科带头人项目  

国家自然科学基金 8206-313

详细信息
    作者简介:

    罗玥媛,在读硕士研究生,E-mail: 447440262@qq.com

    通讯作者:

    廖承德,博士,教授,E-mail: 844681160@qq.com

Research progress of photoacoustic imaging in tumor

Funds: 

the National Natural Science Found 81760316

the National Natural Science Found 81703155

   

the National Natural Science Found 8206-313

  • 摘要: 癌症一直是困扰人类的一大难题,常规成像方法在肿瘤的诊断上存在一定的局限。光声成像作为目前医学影像研究的新热点,相比于常规影像方法,它可以利用内源性对比剂如黑色素和血红蛋白,实时且无创地监测与肿瘤血管生成相关物质的浓度,或者通过分子靶向性外源性造影剂与抗体或多肽结合,提供关于肿瘤结构及其分子信息,从而实现形态及功能成像。近年来,光声成像为癌症的早期诊断、肿瘤血管生成的研究、肿瘤微环境的探测,以及癌症进展和治疗反应的监测做出了有价值的贡献。根据光声成像在肿瘤成像上展示出的独特优势,本文就此种医学成像方法在癌症诊断、分期和治疗指导中的应用进展进行综述。

     

  • [1] Liu YJ, Bhattarai P, Dai ZF, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-108. doi: 10.1039/C8CS00618K
    [2] Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging[J]. Photoacoustics, 2019, 14: 77-98. doi: 10.1016/j.pacs.2019.05.001
    [3] 程茜, 钱梦騄. 多模态光声分子成像进展[J]. 应用声学, 2018, 37(5): 645-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSN201805008.htm
    [4] Borg RE, Rochford J. Molecular photoacoustic contrast agents: design principles & applications[J]. Photochem Photobiol, 2018, 94 (6): 1175-209. doi: 10.1111/php.12967
    [5] Liu C, Gong X, Lin R, et al. Advances in imaging techniques and genetically encoded probes for photoacoustic imaging[J]. Theranostics, 2016, 6(13): 2414-30. doi: 10.7150/thno.15878
    [6] Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-62. doi: 10.1126/science.1216210
    [7] Liu W, Yao J. Photoacoustic microscopy: principles and biomedical applications[J]. Biomed Eng Lett, 2018, 8(2): 203-13. doi: 10.1007/s13534-018-0067-2
    [8] Gargiulo S, Albanese S, Mancini M. State-of-the-art preclinical photoacoustic imaging in oncology: recent advances in cancer theranostics[J]. Contrast Media Mol Imaging, 2019, 2019: 5080267. http://www.researchgate.net/publication/332769003_State-of-the-Art_Preclinical_Photoacoustic_Imaging_in_Oncology_Recent_Advances_in_Cancer_Theranostics
    [9] Qin S, Li A, Yi M, et al. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy[J]. J Hematol Oncol, 2019, 12(1): 27. doi: 10.1186/s13045-019-0718-5
    [10] Attia ABE, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144. doi: 10.1016/j.pacs.2019.100144
    [11] Lundgren K, Holm C, Landberg G. Hypoxia and breast cancer: prognostic and therapeutic implications[J]. Cell Mol Life Sci, 2007, 64(24): 3233-47. doi: 10.1007/s00018-007-7390-6
    [12] Niu YL, Bao L, Chen Y, et al. HIF2--induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis[J]. Cancer Res, 2020, 80(5): 964-75. doi: 10.1158/0008-5472.CAN-19-1532
    [13] Menezes GLG, Pijnappel RM, Meeuwis C, et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 2018, 288(2): 355-65. doi: 10.1148/radiol.2018170500
    [14] Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412. doi: 10.1148/radiol.2017172228
    [15] Neuschler EI, Lavin PT, Tucker FL, et al. Downgrading and upgrading gray-scale ultrasound BI-RADS categories of benign and malignant masses with optoacoustics: a pilot study[J]. AJR Am J Roentgenol, 2018, 211(3): 689-700. doi: 10.2214/AJR.17.18436
    [16] Johnson SP, Ogunlade O, Lythgoe MF, et al. Longitudinal photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on tumors[J]. Clin Cancer Res, 2019, 25(24): 7436-47. doi: 10.1158/1078-0432.CCR-19-0360
    [17] Li XQ, Heldermon CD, Yao L, et al. High resolution functional photoacoustic tomography of breast cancer[J]. Med Phys, 2015, 42 (9): 5321-8. doi: 10.1118/1.4928598
    [18] Menezes GLG, Mann RM, Meeuwis C, et al. Optoacoustic imaging of the breast: correlation with histopathology and histopathologic biomarkers[J]Eur Radiol, 2019, 29(12): 6728-40. doi: 10.1007/s00330-019-06262-0
    [19] Dogan BE, Menezes GLG, Butler RS, et al. Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes[J]. Radiology, 2019, 292(3): 564-72. doi: 10.1148/radiol.2019182071
    [20] Suzuki Y, Kajita H, Konishi N, et al. Subcutaneous lymphatic vessels in the lower extremities: comparison between photoacoustic lymphangiography and near-infrared fluorescence lymphangiography[J]. Radiology, 2020, 295(2): 469-74. doi: 10.1148/radiol.2020191710
    [21] Yang J, Zhang G, Li QQ, et al. Photoacoustic imaging for the evaluation of early tumor response to antivascular treatment[J]. Quant Imaging Med Surg, 2019, 9(2): 160-70. doi: 10.21037/qims.2018.11.06
    [22] Martin Brown J, Wilson WR. Exploiting tumour hypoxia in cancer treatment[J]. Nat Rev Cancer, 2004, 4(6): 437-47. doi: 10.1038/nrc1367
    [23] Diot G, Metz S, Noske A, et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clin Cancer Res, 2017, 23(22): 6912-22. doi: 10.1158/1078-0432.CCR-16-3200
    [24] Dogra VS, Chinni BK, Valluru KS, et al. Multispectral photoacoustic imaging of prostate cancer: preliminary ex vivo results[J]. J Clin Imaging Sci, 2013, 3: 41. doi: 10.4103/2156-7514.119139
    [25] Wang XD, Roberts WW, Carson PL, et al. Photoacoustic tomography: a potential new tool for prostate cancer[J]. Biomed Opt Express, 2010, 1(4): 1117-26. doi: 10.1364/BOE.1.001117
    [26] Qiu C, Bai YY, Yin TH, et al. Targeted imaging of orthotopic prostate cancer by using clinical transformable photoacoustic molecular probe[J]. BMC Cancer, 2020, 20(1): 419. doi: 10.1186/s12885-020-06801-9
    [27] Horiguchi A, Tsujita K, Irisawa K, et al. A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy[J]. Prostate, 2016, 76(3): 307-15. doi: 10.1002/pros.23122
    [28] Aguirre A, Ardeshirpour Y, Sanders MM, et al. Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization[J]. Transl Oncol, 2011, 4(1): 29-37. doi: 10.1593/tlo.10187
    [29] Kamath SD, Bhat RA, Ray S, et al. Autofluorescence of normal, benign, and malignant ovarian tissues: a pilot study[J]. Photomed Laser Surg, 2009, 27(2): 325-35. doi: 10.1089/pho.2008.2261
    [30] Salehi HS, Li H, Merkulov A, et al. Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: ex vivo and in vivo studies[J]. J Biomed Opt, 2016, 21(4): 46006. doi: 10.1117/1.JBO.21.4.046006
    [31] Nandy S, Mostafa A, Hagemann IS, et al. Evaluation of ovarian cancer: initial application of coregistered photoacoustic tomography and US[J]. Radiology, 2018, 289(3): 740-7. doi: 10.1148/radiol.2018180666
    [32] Jokerst JV, Cole AJ, van de Sompel D, et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice[J]. ACS Nano, 2012, 6 (11): 10366-77. doi: 10.1021/nn304347g
    [33] Bohndiek SE, Sasportas LS, Machtaler S, et al. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib[J]. J Nucl Med, 2015, 56(12): 1942-7. doi: 10.2967/jnumed.115.160002
    [34] Yang M, Zhao LY, He XJ, et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study[J]. Biomed Opt Express, BOE, 2017, 8(7): 3449-57. doi: 10.1364/BOE.8.003449
    [35] Dogra VS, Chinni BK, Valluru KS, et al. Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer[J]. Am J Roentgenol, 2014, 202(6): W552-8. doi: 10.2214/AJR.13.11433
    [36] 石磊, 田昊, 张希恬, 等. 光声成像技术在早期肝癌诊断和治疗中的应用[J]. 分子影像学杂志, 2019, 42(2): 145-50. doi: 10.12122/j.issn.1674-4500.2019.02.01
    [37] Zhou Q, Li Z, Zhou J, et al. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft[J]. Photoacoustics, 2016, 4(2): 43-54. doi: 10.1016/j.pacs.2016.04.001
    [38] Miyata A, Ishizawa T, Kamiya M, et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging[J]. PLoS One, 2014, 9(11): e112667. doi: 10.1371/journal.pone.0112667
    [39] Lee S, Kim JH, Lee JH, et al. Non-invasive monitoring of the therapeutic response in sorafenib-treated hepatocellular carcinoma based on photoacoustic imaging[J]. Eur Radiol, 2018, 28(1): 372-81. doi: 10.1007/s00330-017-4960-3
    [40] 关天培. 基于金纳米棒的光声—荧光双模分子探针的制备及其在肝癌中的应用[D]. 广州: 南方医科大学, 2017.
    [41] Breathnach A, Concannon E, Dorairaj JJ, et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging[J]. J Med Imaging (Bellingham), 2018, 5(1): 015004. http://europepmc.org/abstract/MED/29487881
    [42] Zhou Y, Tripathi SV, Rosman I, et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe[J]. J Invest Dermatol, 2017, 137(6): 1370-2. doi: 10.1016/j.jid.2017.01.016
    [43] Hult J, Dahlstrand U, Merdasa A, et al. Unique spectral signature of human cutaneous squamous cell carcinoma by photoacoustic imaging[J]. J Biophotonics, 2020, 13(5): e201960212. doi: 10.1002/jbio.201960212
    [44] Yang G, Amidi E, Chapman W, et al. Co-registered photoacoustic and ultrasound imaging of human colorectal cancer[J]. J Biomed Opt, 2019, 24(12): 1-13. http://www.ncbi.nlm.nih.gov/pubmed/31746155
    [45] Leng XD, Chapman W Jr, Rao B, et al. Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer[J]. Biomed Opt Express, 2018, 9(11): 5159-72. doi: 10.1364/BOE.9.005159
    [46] Cui HZ, Yang XM. In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system[J]. Med Phys, 2010, 37(9): 4777-81. doi: 10.1118/1.3480963
    [47] Knieling F, Neufert C, Hartmann A, et al. Multispectral optoacoustic tomography for assessment of Crohn's disease activity[J]. N Engl J Med, 2017, 376(13): 1292-4. doi: 10.1056/NEJMc1612455
    [48] Tummers WS, Miller SE, Teraphongphom NT, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging[J]. Ann Surg Oncol, 2018, 25(7): 1880-8. doi: 10.1245/s10434-018-6453-2
    [49] Xie ZX, Roberts W, Carson P, et al. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging[J]. Opt Lett, 2011, 36(24): 4815-7. doi: 10.1364/OL.36.004815
    [50] Nguyen VP, Oh J, Park S, et al. Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors[J]. J Biophotonics, 2017, 10(4): 577-88. doi: 10.1002/jbio.201600045
  • 加载中
计量
  • 文章访问数:  687
  • HTML全文浏览量:  259
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 刊出日期:  2021-03-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日