留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

静息态功能磁共振在颞叶癫痫的应用新进展

任行玉 周志斌 高玉军

任行玉, 周志斌, 高玉军. 静息态功能磁共振在颞叶癫痫的应用新进展[J]. 分子影像学杂志, 2021, 44(1): 198-201. doi: 10.12122/j.issn.1674-4500.2021.01.41
引用本文: 任行玉, 周志斌, 高玉军. 静息态功能磁共振在颞叶癫痫的应用新进展[J]. 分子影像学杂志, 2021, 44(1): 198-201. doi: 10.12122/j.issn.1674-4500.2021.01.41
Xingyu REN, Zhibin ZHOU, Yujun GAO. A new development in the application of resting functional magnetic resonance in temporal lobe epilepsy[J]. Journal of Molecular Imaging, 2021, 44(1): 198-201. doi: 10.12122/j.issn.1674-4500.2021.01.41
Citation: Xingyu REN, Zhibin ZHOU, Yujun GAO. A new development in the application of resting functional magnetic resonance in temporal lobe epilepsy[J]. Journal of Molecular Imaging, 2021, 44(1): 198-201. doi: 10.12122/j.issn.1674-4500.2021.01.41

静息态功能磁共振在颞叶癫痫的应用新进展

doi: 10.12122/j.issn.1674-4500.2021.01.41
基金项目: 

湖北省科学技术厅 2020CFB512

湖北省卫生健康委员会联合基金 WJ2019H233

湖北省卫生健康委员会联合基金 WJ2019H232

详细信息
    作者简介:

    任行玉,硕士,E-mail: 1932928646@qq.com

    通讯作者:

    周志斌,博士,主任医师,E-mail: 464229823@qq.com

A new development in the application of resting functional magnetic resonance in temporal lobe epilepsy

  • 摘要: 颞叶癫痫是成人最常见的局灶性癫痫。目前诊断癫痫的方法仍然以症状、电生理居多,脑电图检查中,发作期间的癫痫样放电是诊断癫痫的重要依据,但患者发作期较为短暂,捕捉异常脑电波信号具有一定困难,因此某种程度上,需要借助MRI进一步诊断。但仅依靠普通MRI检查在识别这些患者的癫痫发生区方面仍存在固有的困难。然而,借助改进的定位技术,颞叶癫痫通常可以正确识别。近年来,对于颞叶癫痫的研究已经转移到“功能”磁共振上。在“静止状态”下与大脑打交道。本文对目前可以分析颞叶癫痫患者静止状态的fMRI数据的诸多方法进行概述,包括低频振幅、基于种子的功能连接分析、区域同质性分析、独立成分分析、图分析等。

     

  • 图  1  大脑的轴结构图

    低频波动幅度的结果(静止状态功能磁共振成像); 暖色表示TLE>NC, 冷色表示NC>TLE.

    Figure  1.  Axial map of the brain.

    图  2  局部一致性分布图

    Figure  2.  Image of ReHo.

  • [1] Chang YA, Marshall A, Bahrami N, et al. Differential sensitivity of structural, diffusion, and resting-state functional MRI for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy[J]. Epilepsia, 2019, 60(5): 935-47. doi: 10.1111/epi.14736
    [2] Haneef Z, Lenartowicz A, Yeh HJ, et al. Effect of lateralized temporal lobe epilepsy on the default mode network[J]. Epilepsy Behav, 2012, 25(3): 350-7. doi: 10.1016/j.yebeh.2012.07.019
    [3] Liu M, Bernhardt BC, Hong SJ, et al. The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions[J]. Brain, 2016, 139(pt 9): 2431-40. http://brain.oxfordjournals.org/content/139/9/2431
    [4] Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-17. doi: 10.1177/1971400917697342
    [5] Muhlhofer W, Tan YL, Mueller SG, et al. MRI-negative temporal lobe epilepsy-What do we know?[J]. Epilepsia, 2017, 58(5): 727-42. doi: 10.1111/epi.13699
    [6] Korgaonkar MS, Ram K, Williams LM, et al. Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: a twins study[J]. Hum Brain Mapp, 2014, 35(8): 3893-902. doi: 10.1002/hbm.22446
    [7] Smith K. Brain imaging: fMRI 2.0[J]. Nature, 2012, 484(7392): 24-6. doi: 10.1038/484024a
    [8] Smith K. Brain decoding: Reading minds[J]. Nature, 2013, 502 (7472): 428-30. doi: 10.1038/502428a
    [9] Wang J, Shan Y, Dai J, et al. Altered coupling between resting-state glucose metabolism and functional activity in epilepsy[J]. Ann Clin Transl Neurol, 2020, 7(10): 1831-42. doi: 10.1002/acn3.51168
    [10] Zhang ZQ, Lu GM, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis [J]. Hum Brain Mapp, 2010, 31(12): 1851-61. doi: 10.1002/hbm.20982
    [11] Singh TB, Aisikaer A, He C, et al. The assessment of brain functional changes in the temporal lobe epilepsy patient with cognitive impairment by resting-state functional magnetic resonance imaging [J]. J Clin Imaging Sci, 2020, 10: 50. doi: 10.25259/JCIS_55_2020
    [12] Yang Z, Choupan J, Reutens D, et al. Lateralization of temporal lobe epilepsy based on resting-state functional magnetic resonance imaging and machine learning[J]. Front Neurol, 2015, 6: 184.
    [13] Bettus G, Bartolomei F, Confort-Gouny S, et al. Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy[J]. J Neurol Neurosurg Psychiatry, 2010, 81 (10): 1147-54. doi: 10.1136/jnnp.2009.191460
    [14] Sompairac N, Nazarov PV, Czerwinska U, et al. Independent component analysis for unraveling the complexity of cancer omics datasets[J]. Int J Mol Sci, 2019, 20(18): 4414. doi: 10.3390/ijms20184414
    [15] Lv H, Wang Z, Tong E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-9. http://europepmc.org/abstract/MED/29348136
    [16] Chassoux F, Artiges E, Semah F, et al. Determinants of brain metabolism changes in mesial temporal lobe epilepsy[J]. Epilepsia, 2016, 57(6): 907-19. doi: 10.1111/epi.13377
    [17] Koch W, Teipel S, Mueller S, et al. Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?[J]. NeuroImage, 2010, 51(1): 280-7. doi: 10.1016/j.neuroimage.2009.12.008
    [18] Michael AM, Anderson M, Miller RL, et al. Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA[J]. Front Syst Neurosci, 2014, 26(8): 106. http://pubmedcentralcanada.ca/pmcc/articles/PMC4071815/
    [19] Du Y, Allen EA, He H, et al. Artifact removal in the context of group ICA: a comparison of single-subject and group approaches[J]. Hum Brain Mapp, 2016, 37(3): 1005-25. doi: 10.1002/hbm.23086
    [20] Du Y, Fan Y. Group information guided ICA for fMRI data analysis [J]. Neuroimage, 2013, 69: 157-97. doi: 10.1016/j.neuroimage.2012.11.008
    [21] Erhardt EB, Rachakonda S, Bedrick EJ, et al. Comparison of multisubject ICA methods for analysis of fMRI data[J]. Hum Brain Mapp, 2011, 32(12): 2075-95. doi: 10.1002/hbm.21170
    [22] Bartolomei F, Bettus G, Stam CJ, et al. Interictal network properties in mesial temporal lobe epilepsy: a graph theoretical study from intracerebral recordings[J]. Clin Neurophysiol, 2013, 124(12): 2345-53. doi: 10.1016/j.clinph.2013.06.003
    [23] Stam CJ. Modern network science of neurological disorders[J]. Nat Rev Neurosci, 2014, 15(10): 683-95. doi: 10.1038/nrn3801
    [24] Engel J, Thompson PM, Stern JM, et al. Connectomics and epilepsy [J]. Curr Opin Neurol, 2013, 26(2): 186-94. doi: 10.1097/WCO.0b013e32835ee5b8
    [25] Constable RT, Scheinost D, Finn ES, et al. Potential use and challenges of functional connectivity mapping in intractable epilepsy [J]. Front Neurol, 2013, 4: 39. http://europepmc.org/articles/PMC3660665/
  • 加载中
图(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  179
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日