留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

Immuno-PET在程序性细胞死亡受体配体-1活体成像中的研究进展

肖庆澳 夏旋

肖庆澳, 夏旋. Immuno-PET在程序性细胞死亡受体配体-1活体成像中的研究进展[J]. 分子影像学杂志, 2021, 44(1): 193-197. doi: 10.12122/j.issn.1674-4500.2021.01.40
引用本文: 肖庆澳, 夏旋. Immuno-PET在程序性细胞死亡受体配体-1活体成像中的研究进展[J]. 分子影像学杂志, 2021, 44(1): 193-197. doi: 10.12122/j.issn.1674-4500.2021.01.40
Qing'ao XIAO, Xuan XIA. Advances in vivo imaging of PD-L1 by Immuno-PET[J]. Journal of Molecular Imaging, 2021, 44(1): 193-197. doi: 10.12122/j.issn.1674-4500.2021.01.40
Citation: Qing'ao XIAO, Xuan XIA. Advances in vivo imaging of PD-L1 by Immuno-PET[J]. Journal of Molecular Imaging, 2021, 44(1): 193-197. doi: 10.12122/j.issn.1674-4500.2021.01.40

Immuno-PET在程序性细胞死亡受体配体-1活体成像中的研究进展

doi: 10.12122/j.issn.1674-4500.2021.01.40
基金项目: 

北省自然科学基金 2015CFB316

详细信息
    作者简介:

    :肖庆澳,在读本科生,E-mail: xiaoqingao0912@163.com

    通讯作者:

    夏旋,博士,助理研究员,讲师,E-mail: xiaxuan_2004@163.com

Advances in vivo imaging of PD-L1 by Immuno-PET

  • 摘要: :免疫正电子发射计算机断层显像(Immuno-PET)是一种高效特异性,无创性和活体即时成像的诊断技术。这种技术不仅能可视化活体肿瘤细胞的定位,并且可识别肿瘤免疫受体(如PD-L1)并进行分子量化。PD-L1的靶向成像和预后评价方面具有巨大的发展前景。近年来,Immuno-PET在PD-L1靶向活体成像方面的研究逐渐成为热点。本文就Immuno-PET活体表征PD-L1的原理、应用价值、常用核素、新型示踪剂性质以及其在活体动物、人体上的成像效果等方面作一综述。

     

  • 表  1  几种新型表征PD-L1的immuno-PET示踪剂性质

    Table  1.   Properties of several novel PD-L1tracers of immuno-PET (Mean±SD)

    名称 与PD-L1解离常数(nmol/L) 动物模型最佳T/B比值与到达时间 动物模型最佳T/M比值与到达时间 放射性化学纯度(%) 参考文献
    IgG型示踪剂
      89Zr-C4 人4.2±0.7 ** ** > 98 [29]
      89Zr-DFO-6E11 鼠0.23 41.94±1.84(144 h) 10.74±1.49(144 h) > 99 [33]
      [64Cu]Atezolizumab 鼠0.13、人0.43 ** 13.2±0.9(48 h) > 96 [35]
      98Zr-DFO-PD-L1Mab 鼠≈0.3 ** 48(2 d) > 95 [34]
    单域抗体示踪剂
      68Ga-NOTA-Nb109 鼠2.9 5.48±0.12(1 h) 9.33±0.82(1 h) > 98 [42]
      89Zr-Df-KN035 鼠2.86±0.23 0.5±0.05(24 h) 7.70±1.37(120 h) > 98 [16]
    肽段示踪剂
      [64Cu]WL12 ** 4.7±1.2(1 h) 25.6±1.9(1 h) > 95 [44]
      [68Ga]WL12 ** 7.56±16.47(1 h) 100.47±61.23(2 h) > 99 [43]
    **无文献报道的数据; T/B: 肿瘤血液比; T/M: 肿瘤肌肉比; Immuno-PET: 免疫正电子发射计算机断层显像.
    下载: 导出CSV
  • [1] Wei W, Rosenkrans ZT, Liu J, et al. ImmunoPET: concept, design, and applications[J]. Chem Rev, 2020, 120(8): 3787-851. doi: 10.1021/acs.chemrev.9b00738
    [2] Teng FF, Meng XJ, Kong L, et al. Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: a systematic review[J]. Cancer Lett, 2018, 414: 166-73. doi: 10.1016/j.canlet.2017.11.014
    [3] Bahce I, Yaqub M, Smit EF, et al. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET[J]. Lung Cancer, 2017, 107: 1-13. doi: 10.1016/j.lungcan.2016.05.025
    [4] Emens LA, Ascierto PA, Darcy PK, et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape[J]. Eur J Cancer, 2017, 81: 116-29. doi: 10.1016/j.ejca.2017.01.035
    [5] Du Y, Liang XL, Li Y, et al. Nuclear and fluorescent labeled PD-1- liposome-DOX-64Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy[J]. Mol Pharm, 2017, 14(11): 3978-86. doi: 10.1021/acs.molpharmaceut.7b00649
    [6] Hettich M, Braun F, Bartholomä MD, et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers[J]. Theranostics, 2016, 6(10): 1629-40. doi: 10.7150/thno.15253
    [7] Bailly C, Cléry PF, Faivre-Chauvet A, et al. Immuno-PET for clinical theranostic approaches[J]. Int J Mol Sci, 2016, 18(1): E57. doi: 10.3390/ijms18010057
    [8] Knowles SM, Wu AM. Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology[J]. J Clin Oncol, 2012, 30(31): 3884-92. doi: 10.1200/JCO.2012.42.4887
    [9] Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges[J]. Nucl Med Commun, 2008, 29(3): 193-207. doi: 10.1097/MNM.0b013e3282f3a515
    [10] Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy[J]. J Nucl Med, 2005, 46(Suppl 1): 164S-71S. http://europepmc.org/abstract/MED/15653665
    [11] Chamoto K, Al-Habsi M, Honjo T. Role of PD-1 in immunity and diseases[J]. Curr Top Microbiol Immunol, 2017, 410: 75-97. http://www.ncbi.nlm.nih.gov/pubmed/28929192
    [12] Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy[J]. Lancet Oncol, 2016, 17(12): e542-e551. doi: 10.1016/S1470-2045(16)30406-5
    [13] Wang X, Teng FF, Kong L, et al. PD-L1 expression in human cancers and its association with clinical outcomes[J]. Onco Targets Ther, 2016, 9: 5023-39. doi: 10.2147/OTT.S105862
    [14] Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-65. doi: 10.1016/S0140-6736(16)32517-X
    [15] Shukuya T, Carbone DP. Predictive markers for the efficacy of antiPD-1/PD-L1 antibodies in lung cancer[J]. J Thorac Oncol, 2016, 11 (7): 976-88. doi: 10.1016/j.jtho.2016.02.015
    [16] Li D, Cheng SY, Zou SJ, et al. Immuno-PET imaging of 89Zr labeled anti-PD-L1 domain antibody[J]. Mol Pharm, 2018, 15(4): 1674-81. doi: 10.1021/acs.molpharmaceut.8b00062
    [17] Donnelly DJ, Smith RA, Morin P, et al. Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression[J]. J Nucl Med, 2018, 59(3): 529-35. doi: 10.2967/jnumed.117.199596
    [18] Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy[J]. Mol Imaging, 2017, 16: 1536012117718459. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676497/
    [19] Ilovich O, Natarajan A, Hori S, et al. Development and validation of an immuno-PET tracer as a companion diagnostic agent for antibody-drug conjugate therapy to target the CA6 epitope[J]. Radiology, 2015, 276(1): 191-8. doi: 10.1148/radiol.15140058
    [20] Kumar D, Lisok A, Dahmane E, et al. Peptide-based PET quantifies target engagement of PD-L1 therapeutics[J]. J Clin Invest, 2019, 129 (2): 616-30. doi: 10.1172/JCI122216
    [21] Lindner JR, Link J. Molecular imaging in drug discovery and development[J]. Circ Cardiovasc Imaging, 2018, 11(2): e005355. http://europepmc.org/abstract/MED/29449411
    [22] Sachpekidis C, Anwar H, Winkler J, et al. The role of interim 18FFDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma[J]. Eur J Nucl Med Mol Imaging, 2018, 45(8): 1289-96. doi: 10.1007/s00259-018-3972-9
    [23] Anwar H, Sachpekidis C, Winkler J, et al. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3): 376-83. doi: 10.1007/s00259-017-3870-6
    [24] Fu RS, Carroll L, Yahioglu G, et al. Antibody fragment and affibody ImmunoPET imaging agents: radiolabelling strategies and applications[J]. ChemMedChem, 2018, 13(23): 2466-78. doi: 10.1002/cmdc.201800624
    [25] Wu AM. Antibodies and antimatter: the resurgence of immuno-PET [J]. J Nucl Med, 2008, 50(1): 2-5. doi: 10.2967/jnumed.108.056887
    [26] Van Dijk LK, Boerman OC, Kaanders JH, et al. PET imaging in head and neck cancer patients to monitor treatment response: a future role for EGFR-targeted imaging[J]. Clin Cancer Res, 2015, 21(16): 3602-9. doi: 10.1158/1078-0432.CCR-15-0348
    [27] Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer[J]. Oncotarget, 2015, 6(30): 30384-93. doi: 10.18632/oncotarget.4672
    [28] O'Donoghue JA, Smith-Jones PM, Humm JL, et al. 124I- huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET[J]. J Nucl Med, 2011, 52(12): 1878-85. doi: 10.2967/jnumed.111.095596
    [29] Truillet C, Oh HLJ, Yeo SP, et al. Imaging PD-L1 expression with ImmunoPET[J]. Bioconjug Chem, 2018, 29(1): 96-103. doi: 10.1021/acs.bioconjchem.7b00631
    [30] Wu NJ, Kang CS, Sin I, et al. Promising bifunctional chelators for copper 64-PET imaging: practical (64)Cu radiolabeling and high in vitro and in vivocomplex stability[J]. J Biol Inorg Chem, 2016, 21 (2): 177-84. doi: 10.1007/s00775-015-1318-7
    [31] Chatterjee S, Lesniak WG, Gabrielson M, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors[J]. Oncotarget, 2016, 7(9): 10215-27. doi: 10.18632/oncotarget.7143
    [32] Jauw YWS, O'Donoghue JA, Zijlstra JM, et al. 89Zr-immuno-PET: toward a noninvasive clinical tool to measure target engagement of therapeutic antibodies in vivo[J]. J Nucl Med, 2019, 60(12): 1825-32. doi: 10.2967/jnumed.118.224568
    [33] Christensen C, Kristensen LK, Alfsen MZ, et al. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1302-13. doi: 10.1007/s00259-019-04646-4
    [34] Jagoda EM, Vasalatiy O, Basuli F, et al. Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a zirconium-89 labeled therapeutic antibody, avelumab[J]. Mol Imaging, 2019, 18: 1536012119829986. http://www.researchgate.net/publication/332805678_Immuno-PET_Imaging_of_the_Programmed_Cell_Death-1_Ligand_PD-L1_Using_a_Zirconium-89_Labeled_Therapeutic_Antibody_Avelumab/download
    [35] Lesniak WG, Chatterjee S, Gabrielson M, et al. PD-L1 detection In tumors using[(64)Cu]atezolizumab with PET[J]. Bioconjug Chem, 2016, 27(9): 2103-10. doi: 10.1021/acs.bioconjchem.6b00348
    [36] Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zratezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer[J]. Nat Med, 2018, 24(12): 1852-8. doi: 10.1038/s41591-018-0255-8
    [37] Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients [J]. Nature, 2014, 515(7528): 563-7. doi: 10.1038/nature14011
    [38] Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging[J]. Proc NatlAcad Sci USA, 2015, 112(47): E6506-14. doi: 10.1073/pnas.1519623112
    [39] Olafsen T, Wu AM. Antibody vectors for imaging[J]. Semin Nucl Med, 2010, 40(3): 167-81. doi: 10.1053/j.semnuclmed.2009.12.005
    [40] Wissler HL, Ehlerding EB, Lyu Z, et al. Site-specific immuno-PET tracer to image PD-L1[J]. Mol Pharm, 2019, 16(5): 2028-36. doi: 10.1021/acs.molpharmaceut.9b00010
    [41] Könning D, Zielonka S, Grzeschik J, et al. Camelid and shark single domain antibodies: structural features and therapeutic potential[J]. Curr Opin Struct Biol, 2017, 45: 10-6. doi: 10.1016/j.sbi.2016.10.019
    [42] Lv G, Sun XR, Qiu L, et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single- domain antibody[J]. J Nucl Med, 2020, 61(1): 117-22. doi: 10.2967/jnumed.119.226712
    [43] de Silva RA, Kumar D, Lisok A, et al. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer[J]. Mol Pharm, 2018, 15(9): 3946-52. doi: 10.1021/acs.molpharmaceut.8b00399
    [44] Chatterjee S, Lesniak WG, Miller MS, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide[J]. Biochem Biophys Res Commun, 2017, 483(1): 258-63. doi: 10.1016/j.bbrc.2016.12.156
  • 加载中
表(1)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  216
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-18
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日