留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

肿瘤组织中细胞间粘附分子-1表达的PET/近红外荧光跨模态靶向成像表征

李淼 BARNHARTTodd E ENGLEJonathan W

李淼, BARNHARTTodd E, ENGLEJonathan W. 肿瘤组织中细胞间粘附分子-1表达的PET/近红外荧光跨模态靶向成像表征[J]. 分子影像学杂志, 2021, 44(1): 1-7. doi: 10.12122/j.issn.1674-4500.2021.01.01
引用本文: 李淼, BARNHARTTodd E, ENGLEJonathan W. 肿瘤组织中细胞间粘附分子-1表达的PET/近红外荧光跨模态靶向成像表征[J]. 分子影像学杂志, 2021, 44(1): 1-7. doi: 10.12122/j.issn.1674-4500.2021.01.01
Miao LI, Todd E BARNHART, Jonathan W ENGLE. Dual-modality PET and optical imaging of intercellular adhesion molecule 1 in pancreatic cancer[J]. Journal of Molecular Imaging, 2021, 44(1): 1-7. doi: 10.12122/j.issn.1674-4500.2021.01.01
Citation: Miao LI, Todd E BARNHART, Jonathan W ENGLE. Dual-modality PET and optical imaging of intercellular adhesion molecule 1 in pancreatic cancer[J]. Journal of Molecular Imaging, 2021, 44(1): 1-7. doi: 10.12122/j.issn.1674-4500.2021.01.01

肿瘤组织中细胞间粘附分子-1表达的PET/近红外荧光跨模态靶向成像表征

doi: 10.12122/j.issn.1674-4500.2021.01.01
基金项目: 

国家自然科学基金青年科学基金 81703468

详细信息
    作者简介:

    李淼,博士,助理研究员,E-mail: radiopharm_ml@qq.com

    通讯作者:

    李淼,博士,助理研究员,E-mail: radiopharm_ml@qq.com

Dual-modality PET and optical imaging of intercellular adhesion molecule 1 in pancreatic cancer

  • 摘要: 目的验证基于双标记细胞间粘附分子-1(ICAM-1)单抗示踪剂,进行胰腺癌组织中ICAM-1的正电子发射断层(PET)/近红外荧光(NIRF)跨模态靶向成像的可行性。方法采用流式细胞术测定2种胰腺癌细胞系BxPC-3、MIA PaCa的ICAM-1表达水平。通过生物耦联和配位反应制备NIRF荧光团和[89Z]锆核素双标记示踪剂。在上述细胞系构建的裸鼠皮下移植瘤模型(简称模型鼠)中,测试示踪剂的特异性、跨模态成像性能和生物分布特性;尝试在BxPC-3模型鼠中进行解剖前/后离体组织器官NIRF光学成像。最后采用组织病理学方法确认ICAM-1在移植瘤组织中的分布。结果BxPC-3与MIA PaCa细胞系的ICAM-1表达水平有显著差异(P < 0.05)。PET/NIRF跨模态成像和放射性生物分布实验显示,在2种模型鼠中,肿瘤的示踪剂摄取峰值的差异也有统计学意义(P < 0.05)。PET/NIRF成像所显示的肿瘤位置相互吻合。解剖切除瘤体前后,荧光信号随瘤体转移,周围组织几乎无残留信号。免疫组织化学染色显示,这2种移植瘤组织的ICAM-1表达水平差异与其示踪剂浓聚水平差异正相关(P < 0.05)。结论本研究确认了以ICAM-1为靶标的双标记单抗示踪剂,用于胰腺癌组织临床前靶向跨模态成像是可行的,这为同时实现肿瘤活体全身成像和肿瘤组织原位可视化提供了例证,揭示了基于ICAM-1靶向成像的病灶检测、手术导航等临床转化应用的潜力。

     

  • 图  1  流式细胞术测定的胰腺癌细胞系细胞间粘附分子-1(ICAM-1)表达

    纵轴为归一化后的细胞计数, 横轴系荧光信号强度. A: BxPC-3; B: MIAPaCa; a: 空白对照细胞; b: 仅孵育二抗; c: 以ICAM-1单抗为一抗; d: 以800 CW/Df-ICAM-1单抗为一抗.

    Figure  1.  Expression of ICAM-1 in pancreatic cancer cell lines detected by flow cytometry.

    图  2  胰腺癌模型鼠正电子发射断层成像感兴趣区摄取值动力学曲线

    Figure  2.  Uptake kinetics of region of interest (ROI) in positron emission tomography (PET) images of mouse models of pancreatic cancer.

    图  3  示踪剂在胰腺癌模型鼠各组织器官的放射性生物分布(BxPC-3和MIAPaCa)

    Figure  3.  Radioactive bio-distribution of the tracer in tumors and major organs of mouse models of pancreatic cancer (BxPC-3 and MIAPaCa).

    图  4  胰腺癌模型鼠跨模态成像的典型图像

    示踪剂注射后24 h成像; 箭头所指为肿瘤; A: 正电子发射断层成像(PET)最大密度投影图(MIP); B: 近红外荧光(NIRF)成像.

    Figure  4.  Typical intermodal images of mouse models of pancreatic cancer.

    图  5  BxPC-3胰腺癌模型鼠组织器官原位离体近红外荧光成像的典型图像

    示踪剂给药后24 h进行解剖和成像;箭头所指为肿瘤; A: 解剖前; B: 瘤体移除后; C: 各类组织对比; a: 白光明场对照视图; b: 近红外荧光(NIRF)视图.

    Figure  5.  In situ ex vivo near-infrared fluorescent imaging of typical BxPC-3 mouse model of pancreatic cancer.

    图  6  胰腺癌移植瘤切片经免疫组织化学染色后的荧光共聚焦显微成像

    BxPC-3、MIA PaCa为所接种的胰腺癌细胞系;细胞核采用DAPI染色; ICAM-1的表达采用ICAM-1单抗作为一抗染色; CD31系血管内皮标志物.

    Figure  6.  Confocal imaging of tissue sections from implanted tumors after immuno-fluorescent staining. Scale bar: 100 μm.

  • [1] Boonstra MC, de Geus SW, Prevoo HA, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins [J]. Biomark Cancer, 2016, 8: 119-33. http://europepmc.org/articles/PMC5040425/
    [2] 费怀君, 胡容. 细胞间粘附分子-1在肿瘤研究中的进展[J]. 药物生物技术, 2017, 24(3): 259-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201703015.htm
    [3] Zhang Y, Wang M, Liu W, et al. Optical imaging of triple-negative breast cancer cells in xenograft athymic mice using an ICAM-1-targeting small-molecule probe[J]. Mol Imaging Biol, 2019, 21(5): 835-41. doi: 10.1007/s11307-018-01312-3
    [4] Wei W, Jiang D, Lee HJ, et al. Development and characterization of CD54-targeted immunoPET imaging in solid tumors[J]. Eur J Nucl Med Mol Imaging, 2020, 47(12): 2765-75. doi: 10.1007/s00259-020-04784-0
    [5] Hayes SH, Seigel GM. Immunoreactivity of ICAM-1 in human tumors, metastases and normal tissues[J]. Int J Clin Exp Pathol, 2009, 2(6): 553-60. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713456/
    [6] Huang J, Agoston AT, Guo P, et al. A rationally designed ICAM1 antibody drug conjugate for pancreatic cancer[J]. Adv Sci, 2020, 7 (24): 2002852. doi: 10.1002/advs.202002852
    [7] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
    [8] 武赞凯, 杜恒锐, 王振江, 等. 胰腺癌流行病学及诊治的研究进展[J]. 中南大学学报: 医学版, 2017, 42(6): 713-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYD201706018.htm
    [9] Laeseke PF, Chen R, Jeffrey RB, et al. Combining in vitro diagnostics with in vivo imaging for earlier detection of pancreatic ductal adenocarcinoma: challenges and solutions[J]. Radiology, 2015, 277(3): 644-61. doi: 10.1148/radiol.2015141020
    [10] Singhi AD, Koay EJ, Chari ST, et al. Early detection of pancreatic cancer: opportunities and challenges[J]. Gastroenterology, 2019, 156 (7): 2024-40. doi: 10.1053/j.gastro.2019.01.259
    [11] Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development[J]. PLoS Med, 2008, 5(6): e123. doi: 10.1371/journal.pmed.0050123
    [12] Pan S, Chen R, Crispin DA, et al. Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling[J]. J Proteome Res, 2011, 10(5): 2359-76. doi: 10.1021/pr101148r
    [13] Jenkinson C, Elliott V, Menon U, et al. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer[J]. J Proteomics, 2015, 113: 400-2. doi: 10.1016/j.jprot.2014.10.001
    [14] Cornelissen B, Knight JC, Mukherjee S, et al. Translational molecular imaging in exocrine pancreatic cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45(13): 2442-55. doi: 10.1007/s00259-018-4146-5
    [15] Brooks KJ, Coleman EJ, Vitetta ES. The antitumor activity of an antiCD54 antibody in SCID mice xenografted with human breast, prostate, non-small cell lung, and pancreatic tumor cell lines[J]. Int J Cancer, 2008, 123(10): 2438-45. doi: 10.1002/ijc.23793
    [16] King J, Bouvet M, Singh G, et al. Improving theranostics in pancreatic cancer[J]. J Surg Oncol, 2017, 116(1): 104-13. doi: 10.1002/jso.24625
    [17] Hong H, Zhang Y, Severin GW, et al. Multimodality imaging of breast cancer experimental lung metastasis with bioluminescence and a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW [J]. Mol Pharm, 2012, 9(8): 2339-49. doi: 10.1021/mp300277f
    [18] Tummers WS, Willmann JK, Bonsing BA, et al. Advances in diagnostic and intraoperative molecular imaging of pancreatic cancer [J]. Pancreas, 2018, 47(6): 675-89. doi: 10.1097/MPA.0000000000001075
    [19] Dimastromatteo J, Brentnall T, Kelly KA. Imaging in pancreatic disease[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(2): 97-109. doi: 10.1038/nrgastro.2016.144
    [20] de Geus SW, Boogerd LS, Swijnenburg RJ, et al. Selecting tumorspecific molecular targets in pancreatic adenocarcinoma: paving the way for image-guided pancreatic surgery[J]. Mol Imaging Biol, 2016, 18(6): 807-19. doi: 10.1007/s11307-016-0959-4
    [21] Deddens LH, Tilborg GAF, Toorn A, et al. MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent[J]. Mol Imaging Biol, 2013, 15(4): 411-22. doi: 10.1007/s11307-013-0617-z
    [22] Noonan J, Asiala SM, Grassia G, et al. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy[J]. Theranostics, 2018, 8(22): 6195-209. doi: 10.7150/thno.28665
    [23] Yan F, Sun Y, Mao Y, et al. Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles[J]. Theranostics, 2018, 8(7): 1879-91. doi: 10.7150/thno.22070
    [24] Mosley M, Baguña Torres J, Allen D, et al. Immuno-imaging of ICAM-1 in tumours by SPECT[J]. Nucl Med Biol, 2020, 84/85: 73-9. doi: 10.1016/j.nucmedbio.2020.02.014
    [25] 马涛, 吕毅. 荧光成像技术在胰腺癌术中的导航作用[J]. 中华胰腺病杂志, 2019, 19(6): 404-7.
    [26] Orbay H, Hong H, Koch JM, et al. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105 [J]. Am J Transl Res, 2013, 6(1): 54-63. doi: 10.1021/mp300507r
    [27] Bertrand MJ, Abran M, Maafi F, et al. In vivo near-infrared fluorescence imaging of atherosclerosis using local delivery of novel targeted molecular probes[J]. Sci Rep, 2019, 9(1): 2670. doi: 10.1038/s41598-019-38970-4
    [28] Houghton JL, Zeglis BM, Abdel-Atti D, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer[J]. PNAS, 2015, 112(52): 15850-5. http://europepmc.org/articles/PMC4702985/?report=classic
    [29] Luo H, England CG, Goel S, et al. ImmunoPET and near-infrared fluorescence imaging of pancreatic cancer with a dual-labeled bispecific antibody fragment[J]. Mol Pharm, 2017, 14(5): 1646-55. doi: 10.1021/acs.molpharmaceut.6b01123
    [30] Zettlitz KA, Tsai WK, Knowles SM, et al. Dual-modality immunoPET and near-infrared fluorescence imaging of pancreatic cancer using an anti-prostate stem cell antigen cys-diabody[J]. J Nucl Med, 2018, 59(9): 1398-405. doi: 10.2967/jnumed.117.207332
    [31] Wang Q, Yan H, Jin YS, et al. A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer[J]. Biomaterials, 2018, 183: 173-84. doi: 10.1016/j.biomaterials.2018.08.048
  • 加载中
图(6)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  601
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回