留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

影像组学在非肿瘤病变方面的应用进展

王丽珊 张瑞明

王丽珊, 张瑞明. 影像组学在非肿瘤病变方面的应用进展[J]. 分子影像学杂志, 2020, 43(3): 462-465. doi: 10.12122/j.issn.1674-4500.2020.03.19
引用本文: 王丽珊, 张瑞明. 影像组学在非肿瘤病变方面的应用进展[J]. 分子影像学杂志, 2020, 43(3): 462-465. doi: 10.12122/j.issn.1674-4500.2020.03.19
Lishan WANG, Ruiming ZHANG. Advances of radiomics in non-neoplastic disease[J]. Journal of Molecular Imaging, 2020, 43(3): 462-465. doi: 10.12122/j.issn.1674-4500.2020.03.19
Citation: Lishan WANG, Ruiming ZHANG. Advances of radiomics in non-neoplastic disease[J]. Journal of Molecular Imaging, 2020, 43(3): 462-465. doi: 10.12122/j.issn.1674-4500.2020.03.19

影像组学在非肿瘤病变方面的应用进展

doi: 10.12122/j.issn.1674-4500.2020.03.19
详细信息
    作者简介:

    王丽珊, 硕士, 初级, E-mail: yuchuanchisu@sina.com

Advances of radiomics in non-neoplastic disease

  • 摘要: 影像组学自兴起以来在肿瘤学诊断、鉴别及预后方面取得了不少研究成果。在肿瘤学方面不断发展的同时,在临床非肿瘤性病变诊断方面影像组学也发挥其高通量、大数据方面的优势,取得了可喜的进步。相关报道围绕脑体积精确测量,注意缺陷多动障碍、精神分裂症、肥厚性心肌病及高血压性心脏病鉴别、急性冠脉综合征和粥样斑块特点以及肝硬化等疾病的诊断。研究结果显示,相对以往常规的影像方法,影像组学显示出更加精准的诊断优势。尽管相关研究方式不尽相同,多项研究结果显示ICC及AUC值可达0.9左右甚至接近1。现将上述研究详细综述如下。

     

  • [1] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-77. http://d.old.wanfangdata.com.cn/Periodical/dianzixb202004003
    [2] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-6. http://d.old.wanfangdata.com.cn/Periodical/dianzixb202004003
    [3] Liu ZY, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-22. doi: 10.7150/thno.30309
    [4] Foy JP, Durdux C, Giraud P, et al. RE: the rise of radiomics and implications for oncologic management[J]. J Natl Cancer Inst, 2018, 110(11): 1275-6. doi: 10.1093/jnci/djy037
    [5] Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J]. Ann Oncol, 2017, 28(6): 1191-206. doi: 10.1093/annonc/mdx034
    [6] Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-57. http://cn.bing.com/academic/profile?id=fcc600eef9b5b750026f3cf3a9d415b9&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Verma V, Simone CB 2nd, Krishnan S, et al. The rise of radiomics and implications for oncologic management[J]. J Natl Cancer Inst, 2017, 109(7): 55-62. http://cn.bing.com/academic/profile?id=96385562eb59900d4f622894ffe0fa49&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006-13. doi: 10.1038/ncomms5006
    [9] Adduru VR, Michael AM, Helguera M, et al. Leveraging clinical imaging archives for radiomics: reliability of automated methods for brain volume measurement[J]. Radiology, 2017, 284(3): 862-9. doi: 10.1148/radiol.2017161928
    [10] Smith SM, Zhang YY, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis[J]. Neuroimage, 2002, 17(1): 479-89. doi: 10.1006/nimg.2002.1040
    [11] Smith SM. Fast robust automated brain extraction[J]. Hum Brain Mapp, 2002, 17(3): 143-55. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028532798/
    [12] Eritaia J, Wood SJ, Stuart GW, et al. An optimized method for estimating intracranial volume from magnetic resonance images[J]. Magn Reson Med, 2000, 44(6): 973-7. doi: 10.1002/1522-2594(200012)44:6<973::AID-MRM21>3.0.CO;2-H
    [13] Klauschen F, Goldman A, Barra V, et al. Evaluation of automated brain MR image segmentation and volumetry methods[J]. Hum Brain Mapp, 2009, 30(4): 1310-27. doi: 10.1002/hbm.20599
    [14] Malone IB, Leung KK, Clegg S, et al. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance[J]. Neuroimage, 2015, 104: 366-72. doi: 10.1016/j.neuroimage.2014.09.034
    [15] Sun HQ, Chen Y, Huang Q, et al. Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis[J]. Radiology, 2018, 287(2): 620-30. doi: 10.1148/radiol.2017170226
    [16] Port JD. Diagnosis of attention deficit hyperactivity disorder by using MR imaging and radiomics: a potential tool for clinicians[J]. Radiology, 2018, 287(2): 631-2. http://cn.bing.com/academic/profile?id=6667677e9ddf3545298263f37cc66698&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Cui LB, Liu L, Wang HN, et al. Disease definition for schizophrenia by functional connectivity using radiomics strategy[J]. Schizophr Bull, 2018, 44(5): 1053-9. doi: 10.1093/schbul/sby007
    [18] Neisius U, El-Rewaidy H, Nakamori S, et al. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1946-54. doi: 10.1016/j.jcmg.2018.11.024
    [19] Al-Mallah MH. Radiomics in hypertrophic cardiomyopathy: the new tool[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1955-7. doi: 10.1016/j.jcmg.2019.02.004
    [20] Leiner T. Detecting coronary plaque vulnerability using computed tomography radiomics: the one stop shop for plaque vulnerability?[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(11): 1248-9. doi: 10.1093/ehjci/jez071
    [21] Kolossváry M, Karády J, Szilveszter B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign[J]. Circ Cardiovasc Imaging, 2017, 10(12): e006843-9. http://cn.bing.com/academic/profile?id=8a9dd9f43ae797987880122751327304&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Kolossváry M, Park J, Bang JI, et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(11): 1250-8. doi: 10.1093/ehjci/jez033
    [23] Dey D, Commandeur F. Radiomics to identify high-risk atherosclerotic plaque from computed tomography: the power of quantification[J]. Circ Cardiovasc Imaging, 2017, 10(12): e007254-61. http://cn.bing.com/academic/profile?id=0d7bf8d52f54fb32f8e54ce5d7e28b19&encoded=0&v=paper_preview&mkt=zh-cn
    [24] Wang K, Lu X, Zhou H, et al. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4): 729-41. doi: 10.1136/gutjnl-2018-316204
    [25] Park HJ, Lee SS, Park B, et al. Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis[J]. Radiology, 2019, 290(2): 380-7. http://cn.bing.com/academic/profile?id=549c95bc4dc41ee8bbea47230776f7b7&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
计量
  • 文章访问数:  1055
  • HTML全文浏览量:  421
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回