Application and prospect of artificial intelligence in department of urology
-
摘要: 目前在国内外,人工智能已经在泌尿外科领域的日常医疗保健中有所运用,如通过建立神经网络,从CT结果上预测尿石症的预后,结石清除率,预测术中出血量等,使医生更好地选择治疗方案。通过CT纹理研究,经深度学习和机器学习,准确鉴别肾脏良恶性肿瘤,提高透明细胞癌的检出率,大大降低漏诊及误诊率。使用放射学和纹理特征分析来研究膀胱癌,区分低级别和高级别肿瘤,使医生选定对病人创伤小的术式。并使用算法预测治疗反应,肿瘤复发率,从而延长患者生存率。开发前列腺癌Gleason评分预测、MRI计算机辅助算法诊断,手术结果和生化复发预测等,针对不同病人提供个体化治疗方案。研究发现,这些方法优于传统的统计方法。本文旨在全面回顾近年来人工智能在泌尿外科领域影像学应用的发展,从尿石症、肾肿瘤、膀胱癌、前列腺癌4种常见泌尿系疾病的影像学应用综述,为今后人工智能的临床运用提供更开阔的思路。Abstract: Artificial intelligence (AI) has been used in the daily medical care of Urology field. For example, through the establishment of neural network, the prognosis of urolithiasis can be predicted from the CT results. The stone clearance rate and the amount of intraoperative bleeding can be predicted, so that doctors can better choose the treatment plan. Through the study of CT texture, we can distinguish the benign and malignant renal tumors accurately, improve the detection rate of clear cell carcinoma, and greatly reduce the rate of missed diagnosis and misdiagnosis. The radiology and texture analysis are used to study bladder cancer, distinguish between low-level and high-level tumors, so that doctors can choose the surgical methods with less trauma to patients. The algorithm is used to predict the response to treatment and the recurrence rate of tumor, so as to prolong the survival rate of patients. To develop Gleason score prediction, MRI computer- aided algorithm diagnosis, surgical results and biochemical recurrence prediction for prostate cancer, and provide individualized treatment programs for different patients. It is found that these methods are superior to the traditional statistical methods. The purpose of this paper is to review the development of imaging system application of AI in urology in recent years, and provide a broader idea for clinical application of AI in the future.
-
Key words:
- artificial intelligence /
- machine learning /
- deep learning /
- prostate cancer /
- bladder cancer /
- renal cell carcinoma /
- urolithiasis
-
[1] Bali J, Garg R, Bali RT. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required[J]. Indian J Ophthalmol, 2019, 67(1): 3-6. [2] Frankish K, Ramsey WM. The cam-bridge handbook of artificial intelligence[M]. Cambridge: Cambridge University Press, 2014: 1- 14. [3] Russell S, Bohannon J. Artificial intelligence. Fears of an AI pioneer [J]. Science, 2015, 349(6245): 252. doi: 10.1126/science.349.6245.252 [4] Tran BX, Vu GT, Ha GH, et al. Global evolution of research in artificial intelligence in health and medicine: a bibliometric study[J]. J Clin Med, 2019, 8(3): E360. doi: 10.3390/jcm8030360 [5] Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7): 391-403. doi: 10.1038/s41585-019-0193-3 [6] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2(10): 719-31. doi: 10.1038/s41551-018-0305-z [7] Kadlec AO, Ohlander S, Hotaling J, et al. Nonlinear logistic regression model for outcomes after endourologic procedures: a novel predictor[J]. Urolithiasis, 2014, 42(4): 323-7. doi: 10.1007/s00240-014-0656-1 [8] Aminsharifi A, Irani D, Pooyesh S, et al. Artificial neural network system to predict the postoperative outcome of percutaneous nephrolithotomy[J]. J Endourol, 2017, 31(5): 461-7. doi: 10.1089/end.2016.0791 [9] Choo MS, Uhmn S, Kim JK, et al. A prediction model using machine learning algorithm for assessing stone-free status after single session shock wave lithotripsy to treat ureteral stones[J]. J Urol, 2018, 200 (6): 1371-7. doi: 10.1016/j.juro.2018.06.077 [10] Seckiner I, Seckiner S, Sen H, et al. A neural network-based algorithm for predicting stone-free status after ESWL therapy[J]. Int Braz J Urol, 2017, 43(6): 1110-4. doi: 10.1590/s1677-5538.ibju.2016.0630 [11] Längkvist M, Jendeberg J, Thunberg P, et al. Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional neural networks[J]. Comput Biol Med, 2018, 97: 153-60. doi: 10.1016/j.compbiomed.2018.04.021 [12] Kazemi Y, Mirroshandel SA. A novel method for predicting kidney stone type using ensemble learning[J]. Artif Intell Med, 2018, 84: 117-26. doi: 10.1016/j.artmed.2017.12.001 [13] Richard PO, Jewett MA, Bhatt JR, et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience[J]. Eur Urol, 2015, 68(6): 1007-13. doi: 10.1016/j.eururo.2015.04.004 [14] Mir MC, Capitanio U, Bertolo R, et al. Role of active surveillance for localized small renal masses[J]. Eur Urol Oncol, 2018, 1(3): 177-87. doi: 10.1016/j.euo.2018.05.001 [15] Bektas CT, Kocak B, Yardimci AH, et al. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of fuhrman nuclear grade [J]. Eur Radiol, 2019, 29(3): 1153-63. doi: 10.1007/s00330-018-5698-2 [16] Kocak B, Yardimci AH, Bektas CT, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation[J]. Eur J Radiol, 2018, 107: 149-57. doi: 10.1016/j.ejrad.2018.08.014 [17] Kunapuli G, Varghese BA, Ganapathy P, et al. A decision-support tool for renal mass classification[J]. J Digit Imaging, 2018, 31(6): 929-39. doi: 10.1007/s10278-018-0100-0 [18] Yu HS, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors[J]. Abdom Radiol (NY), 2017, 42(10): 2470-8. doi: 10.1007/s00261-017-1144-1 [19] Yan LF, Liu ZY, Wang GY, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images[J]. Acad Radiol, 2015, 22(9): 1115-21. doi: 10.1016/j.acra.2015.04.004 [20] Coy H, Hsieh K, Wu W, et al. Deep learning and radiomics: the utility of Google TensorFlowTM Inception in classifying clear cell renal cell carcinoma and oncocytoma on Multiphasic CT[J]. Abdom Radiol (NY), 2019, 44(6): 2009-20. doi: 10.1007/s00261-019-01929-0 [21] Minardi D, Lucarini G, Mazzucchelli R, et al. Prognostic role of Fuhrman grade and vascular endothelial growth factor in pT1a clear cell carcinoma in partial nephrectomy specimens[J]. J Urol, 2005, 174(4 Pt 1): 1208-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88bac102e179d24df897207a79630b78 [22] Holdbrook DA, Singh M, Choudhury Y, et al. Automated renal cancer grading using nuclear pleomorphic patterns[J]. JCO Clin Cancer Inform, 2018, 2: 1-12. [23] Ding JL, Xing ZY, Jiang ZX, et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma[J]. Eur J Radiol, 2018, 103: 51-6. doi: 10.1016/j.ejrad.2018.04.013 [24] Kocak B, Durmaz ES, Ates E, et al. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade[J]. Am J Roentgenol, 2019: W1-8. [25] Lin F, Cui EM, Lei Y, et al. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma [J]. Abdom Radiol (NY), 2019, 44(7): 2528-34. doi: 10.1007/s00261-019-01992-7 [26] Li P, Ren H, Zhang Y, et al. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma[J]. Medicine (Baltimore), 2018, 97(33): e11839. doi: 10.1097/MD.0000000000011839 [27] Kocak B, Durmaz ES, Ates E, et al. Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status[J]. Am J Roentgenol, 2019, 212(3): W55-63. doi: 10.2214/AJR.18.20443 [28] Xu XP, Zhang X, Tian Q, et al. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI[J]. Int J Comput Assist Radiol Surg, 2017, 12(4): 645-56. doi: 10.1007/s11548-017-1522-8 [29] Zhang X, Xu XP, Tian Q, et al. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging [J]. J Magn Reson Imaging, 2017, 46(5): 1281-8. doi: 10.1002/jmri.25669 [30] Eminaga O, Eminaga N, Semjonow A, et al. Diagnostic classification of cystoscopic images using deep convolutional neural networks[J]. JCO Clin Cancer Inform, 2018, 2: 1-8. [31] Sokolov I, Dokukin ME, Kalaparthi V, et al. Noninvasive diagnostic imaging using machine- learning analysis of nanoresolution images of cell surfaces: detection of bladder cancer[J]. Proc Natl Acad Sci USA, 2018, 115(51): 12920-5. doi: 10.1073/pnas.1816459115 [32] Brieu N, Gavriel CG, Nearchou IP, et al. Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis[J]. Sci Rep, 2019, 9(1): 5174. [33] Hasnain Z, Mason J, Gill K, et al. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients[J]. PLoS One, 2019, 14(2): e0210976. doi: 10.1371/journal.pone.0210976 [34] Bartsch G Jr, Mitra AP, Mitra SA, et al. Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder[J]. J Urol, 2016, 195(2): 493-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c78183ddac0f77837508ac641caf6a3a [35] Wu E, Hadjiiski LM, Samala RK, et al. Deep learning approach for assessment of bladder cancer treatment response[J]. Tomography, 2019, 5(1): 201-8. doi: 10.18383/j.tom.2018.00036 [36] Cha KH, Hadjiiski LM, Cohan RH, et al. Diagnostic accuracy of CT for prediction of bladder cancer treatment response with and without computerized decision support[J]. Acad Radiol, 2019, 26(9): 1137- 45. doi: 10.1016/j.acra.2018.10.010 [37] Takeuchi T, Hattori- Kato M, Okuno Y, et al. Prediction of prostate cancer by deep learning with multilayer artificial neural network[J]. J De L'association Des Urol Du Can, 2019, 13(5): E145-50. [38] Zhang YD, Wang J, Wu CJ, et al. An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification[J]. Oncotarget, 2016, 7(47): 78140-51. doi: 10.18632/oncotarget.11293 [39] Ishioka J, Matsuoka Y, Uehara S, et al. Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm[J]. BJU Int, 2018, 122(3): 411-7. [40] Bonekamp D, Kohl S, Wiesenfarth M, et al. Radiomic machine learning for characterization of prostate lesions with MRI: comparison to ADC values[J]. Radiology, 2018, 289(1): 128-37. doi: 10.1148/radiol.2018173064 [41] Arvaniti E, Fricker KS, Moret M, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning[J]. Sci Rep, 2018, 8(1): 12054. [42] Donovan MJ, Fernandez G, Scott R, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithmbased test[J]. Prostate Cancer Prostatic Dis, 2018, 21(4): 594-603. doi: 10.1038/s41391-018-0067-4 [43] Auffenberg GB, Ghani KR, Ramani S, et al. askMUSIC: leveraging a clinical registry to develop a new machine learning model to inform patients of prostate cancer treatments chosen by similar men[J]. Eur Urol, 2019, 75(6): 901-7. doi: 10.1016/j.eururo.2018.09.050 [44] Abdollahi H, Mofid B, Shiri I, et al. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer[J]. Radiol Med, 2019, 124(6): 555-67. doi: 10.1007/s11547-018-0966-4 [45] Hung AJ, Chen J, Che ZP, et al. Utilizing machine learning and automated performance metrics to evaluate robot-assisted radical prostatectomy performance and predict outcomes[J]. J Endourol, 2018, 32(5): 438-44. doi: 10.1089/end.2018.0035 [46] Hung AJ, Chen J, Ghodoussipour S, et al. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy[J]. BJU Int, 2019, 124(3): 487-95. doi: 10.1111/bju.14735 [47] Wong NC, Lam C, Patterson L, et al. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy[J]. BJU Int, 2019, 123(1): 51-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51bdb0557c07e94e35e4a445fdf6f4d5 [48] Chen J, Remulla D, Nguyen JH, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice[J]. BJU Int, 2019, 124(4): 567-7. doi: 10.1111/bju.14852
点击查看大图
计量
- 文章访问数: 1049
- HTML全文浏览量: 400
- PDF下载量: 31
- 被引次数: 0