Application of high-resolution magnetic resonance vessel wall imaging in intracranial atherosclerotic disease
-
摘要: 高分辨率磁共振血管壁成像(HR-VWI)是一种具有超高分辨率的磁共振成像技术。其抑制血流信号后能清晰显示动脉粥样硬化斑块的纤维帽、脂质核心、壁内血肿及管腔狭窄情况。HR-VWI能为临床诊疗提供关键影像学信息,在动脉粥样硬化性心脑血管疾病中具有重要诊断价值。本文就HR-VWI成像原理及其在颅内动脉粥样硬化性疾病的评估、在颅内动脉夹层及动脉瘤中的应用价值、在症状性非狭窄性颅内动脉粥样硬化性疾病中的应用、在脑小动脉病变及腔隙性脑梗死中的应用与动脉粥样硬化性疾病的科学研究等方面进行综述。
-
关键词:
- 高分辨率磁共振血管壁成像 /
- 颅内动脉粥样硬化性疾病 /
- 动脉夹层 /
- 动脉瘤 /
- 综述
Abstract: High-resolution magnetic resonance vascular wall imaging (HR-VWI) is a magnetic resonance imaging technology with ultra-high resolution. By suppressing blood flow signals, it can clearly present fibrous caps, lipid cores, intramural hematomas and lumen stenosis of atherosclerotic plaques. HR-VWI provides important imaging information and has great value for clinical diagnosis and treatment in atherosclerotic cardiovascular and cerebrovascular diseases. This article reviews the imaging forming principle of HR-VWI and its clinical application with scientific research in intracranial atherosclerotic diseases. -
[1] Mandell DM, Mossa BM, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American society of neuroradiology[J]. Am J Neuroradiol, 2017, 38(3): 218-29. [2] Ahmadi A, Argulian E, Leipsic J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 74(12): 1608-17. doi: 10.1016/j.jacc.2019.08.012 [3] Anwaier G, Chen C, Cao Y, et al. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque[J]. Int J Nanomedicine, 2017, 12(8): 7681-93. [4] Chistiakov DA, Kashirskikh DA, Khotina VA, et al. Immune-inflammatory responses in atherosclerosis: the role of myeloid cells[J]. J Clin Med, 2019, 8(11): 115-27. [5] Dankevych KI, Vynogradova OM, Malko NV, et al. Periodontal diseases and atherosclerosis[J]. Wiad Lek, 2019, 72(3): 462-5. [6] Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese intracranial atherosclerosis (CICAS) study[J]. Stroke, 2014, 45(3): 663-9. doi: 10.1161/STROKEAHA.113.003508 [7] Jiang Y, Zhu C, Peng W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI[J]. Atherosclerosis, 2016, 249(2): 10-6. [8] Turan TN, Rumboldt Z, Granholm AC, et al. Intracranial atherosclerosis: correlation between in-vivo 3T high resolution MRI and pathology[J]. Atherosclerosis, 2014, 237(2): 460-3. doi: 10.1016/j.atherosclerosis.2014.10.007 [9] Zhang DF, Chen YC, Chen H, et al. A high-resolution MRI study of relationship between remodeling patterns and ischemic stroke in patients with atherosclerotic middle cerebral artery stenosis[J]. Front Aging Neurosci, 2017, 9(4): 140-9. [10] Havenon DA, Mossa BM, Shah L, et al. High-resolution vessel wall MRI for the evaluation of intracranial atherosclerotic disease[J]. Neuroradiology, 2017, 59(12): 1193-202. doi: 10.1007/s00234-017-1925-9 [11] Wang E, Shao S, Li S, et al. A high-resolution MRI study of the relationship between plaque enhancement and ischemic stroke events in patients with intracranial atherosclerotic stenosis[J]. Front Neurol, 2018, 9(6): 1154-63. [12] Zhu C, Tian X, Degnan AJ, et al. Clinical significance of intraplaque hemorrhage in low- and high-grade basilar artery stenosis on high-resolution MRI[J]. Am J Neuroradiol, 2018, 39(7): 1286-92. doi: 10.3174/ajnr.A5676 [13] Abe A, Sekine T, Sakamoto Y, et al. Contrast-enhanced high-resolution MRI for evaluating time course changes in middle cerebral artery plaques[J]. J Nippon Med Sch, 2018, 85(1): 28-33. doi: 10.1272/jnms.2018_85-4 [14] Kwee RM, Qiao Y, Liu L, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI[J]. Neuroradiology, 2019, 61(6): 651-7. doi: 10.1007/s00234-019-02190-4 [15] Mechtouff L, Ritzenthaler T, Cho TH, et al. High-resolution MRI: detection of a culprit plaque after recurrent thrombolysis[J]. J Neurol, 2015, 262(12): 2773-5. doi: 10.1007/s00415-015-7915-0 [16] Wang M, Yang Y, Zhou F, et al. The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy[J]. Sci Rep, 2017, 7(6): 44264-75. [17] Guo R, Zhang X, Zhu X, et al. Morphologic characteristics of severe basilar artery atherosclerotic stenosis on 3D high-resolution MRI[J]. BMC Neurol, 2018, 18(1): 206-17. doi: 10.1186/s12883-018-1214-1 [18] Uemura M, Terajima K, Suzuki Y, et al. Visualization of the intimal flap in intracranial arterial dissection using high-resolution 3T MRI[J]. J Neuroimag, 2017, 27(1): 29-32. doi: 10.1111/jon.12380 [19] Zhang M, Ye G, Liu Y, et al. Clinical application of high-resolution MRI in combination with digital subtraction angiography in the diagnosis of vertebrobasilar artery dissecting aneurysm: an observational study (STROBE compliant)[J]. Medicine (Baltimore), 2019, 98(14): e14857-68. doi: 10.1097/MD.0000000000014857 [20] Wang GX, Li W, Lei S, et al. Relationships between aneurysmal wall enhancement and conventional risk factors in patients with intracranial aneurysm: a high-resolution MRI study[J]. J Neuroradio, 2019, 46(1): 25-8. doi: 10.1016/j.neurad.2018.09.007 [21] Fu Q, Guan S, Liu C, et al. Clinical significance of circumferential aneurysmal wall enhancement in symptomatic patients with unruptured intracranial aneurysms: a high-resolution MRI study[J]. Clin Neuroradiol, 2018, 28(4): 509-14. doi: 10.1007/s00062-017-0598-4 [22] Hu P, Yang Q, Wang DD, et al. Wall enhancement on high-resolution magnetic resonance imaging may predict an unsteady state of an intracranial saccular aneurysm[J]. Neuroradiology, 2016, 58: 979-85. doi: 10.1007/s00234-016-1729-3 [23] Kim S, Kang M, Jo J, et al. Spontaneous regression of an intracranial aneurysm following remote aneurysm clipping: evaluation with high-resolution vessel wall MRI[J]. Cardiovasc Intervent Radiol, 2018, 41(4): 660-3. doi: 10.1007/s00270-017-1864-1 [24] Havenon DA, Yuan C, Tirschwell D, et al. Nonstenotic culprit plaque: the utility of high-resolution vessel wall MRI of intracranial vessels after ischemic stroke[J]. Case Rep Radiol, 2015, 201(12): 356-82. [25] Chen Z, Mo J, Xu J, et al. Risk profile of ischemic stroke caused by small-artery occlusion vs deep intracerebral hemorrhage[J]. Front Neurol, 2019, 10(4): 1213-21. [26] Chung JW, Kim BJ, Sohn CH, et al. Branch atheromatous plaque: a major cause of lacunar infarction (high-resolution MRI study)[J]. Cerebrovasc Dis Extra, 2012, 2(1): 36-44. doi: 10.1159/000341399 [27] Xia C, Chen HS, Wu SW, et al. Etiology of isolated pontine infarctions: a study based on high-resolution MRI and brain small vessel disease scores[J]. BMC Neurol, 2017, 17(1): 216-27. doi: 10.1186/s12883-017-0999-7 [28] Lim SH, Choi H, Kim HT, et al. Basilar plaque on high-resolution MRI predicts progressive motor deficits after pontine infarction[J]. Atherosclerosis, 2015, 240(1): 278-83. doi: 10.1016/j.atherosclerosis.2015.03.029 [29] Chung JW, Cha J, Lee MJ, et al. Intensive statin treatment in acute ischaemic stroke patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-11. doi: 10.1136/jnnp-2019-320893 [30] Zini C, Venneri MA, Miglietta S, et al. USPIO-labeling in M1 and M2-polarized macrophages: an in vitro study using a clinical magnetic resonance scanner[J]. J Cell Physiol, 2018, 233(8): 5823-8. doi: 10.1002/jcp.26360 [31] Poon C, Gallo J, Joo J, et al. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis[J]. J Nanobiotechnology, 2018, 16(1): 92-9. doi: 10.1186/s12951-018-0420-8 [32] Palekar RU, Jallouk AP, Lanza GM, et al. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents[J]. Nanomedicine (Lond), 2015, 10(11): 1817-32. doi: 10.2217/nnm.15.26 [33] Seifert R, Kuhlmann MT, Eligehausen S, et al. Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis[J]. PLoS One, 2018, 13(10): e0204305-16. doi: 10.1371/journal.pone.0204305
点击查看大图
计量
- 文章访问数: 1215
- HTML全文浏览量: 545
- PDF下载量: 50
- 被引次数: 0