留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

双光子成像在细胞移植与治疗中的应用

杨皓旻 肖昀 张运海 倪健强

杨皓旻, 肖昀, 张运海, 倪健强. 双光子成像在细胞移植与治疗中的应用[J]. 分子影像学杂志, 2020, 43(1): 36-40. doi: 10.12122/j.issn.1674-4500.2020.01.08
引用本文: 杨皓旻, 肖昀, 张运海, 倪健强. 双光子成像在细胞移植与治疗中的应用[J]. 分子影像学杂志, 2020, 43(1): 36-40. doi: 10.12122/j.issn.1674-4500.2020.01.08
Haomin YANG, Yun XIAO, Yunhai ZHANG, Jianqiang NI. Application of two-photon imaging on cell transplantation and therapy[J]. Journal of Molecular Imaging, 2020, 43(1): 36-40. doi: 10.12122/j.issn.1674-4500.2020.01.08
Citation: Haomin YANG, Yun XIAO, Yunhai ZHANG, Jianqiang NI. Application of two-photon imaging on cell transplantation and therapy[J]. Journal of Molecular Imaging, 2020, 43(1): 36-40. doi: 10.12122/j.issn.1674-4500.2020.01.08

双光子成像在细胞移植与治疗中的应用

doi: 10.12122/j.issn.1674-4500.2020.01.08
基金项目: 国家重点研发计划资助(2017YFC0110304)
详细信息
    作者简介:

    杨皓旻,博士,副研究员,E-mail:yanghaom@sibet.ac.cn

    通讯作者:

    张运海,博士,研究员,E-mail:zhangyh@sibet.ac.cn

Application of two-photon imaging on cell transplantation and therapy

  • 摘要: 双光子成像技术具有活体三维深层成像的能力,是重要的活体成像工具,在针对生物组织相关的活体、原位研究中应用广泛。通过移植细胞建立研究模型,可以在真实的细胞微环境中进行过程与机理研究。结合双光子成像技术,可以对移植细胞进行在体形态学鉴定与功能评价,避免体外培养模型带来的差异。双光子成像技术促进了疾病模型的研究,为疾病与治疗等病理生理过程的研究提供了重要的研究手段。细胞移植已经用于中枢神经系统、心肌、骨髓以及抗肿瘤药物等研究模型建立中,本文对双光子成像技术的技术原理、应用领域进行综述,并探讨了该技术的发展前景。双光子成像技术以其较大的成像深度、较高的成像质量等特点,满足了在体成像的需求,在以动物为研究对象的研究中发挥了重要的作用,使我们对活细胞生理、病理和药理领域的认识得到极大的发展。

     

  • 图  1  人ESC移植到新生小鼠脑部2月后不同脑部区域的轴突双光子图像

    A:纹状体;B:胼胝体;C:内囊;D:丘脑[29]

    Figure  1.  Axonal two-photon images of different brain regions of newborn mice after human ESC transplantation

    图  2  完整心脏中心肌细胞移植后的双光子图像

    A:灌注rhod-2的小鼠心脏图像,包含表达EGFP的移植心肌细胞,宿主心肌细胞由于绿色的EGFP和红色的rhod-2叠加,显示为黄色;B:对A图中白线区域线扫描结果[36]

    Figure  2.  Two-photon images of intact central cardiac muscle cells after transplantation

    图  3  对颅骨不同深度下的二维双光子图像

    白色为颅骨中胶原骨信号,红色为DiD标记的细胞,黄色为自发荧光的细胞,绿色为成骨细胞[41]

    Figure  3.  Two-dimensional two-photon images of the skull at different depths

    图  4  紫杉醇治疗后的肿瘤细胞双光子图像

    A:对照组小鼠肿瘤细胞转移结节;B~D:治疗组小鼠肿瘤细胞转移结节,可见肿瘤细胞破碎、膨胀和细胞核聚集[44]

    Figure  4.  Two-photon image of tumor cells treated with paclitaxel

  • [1] Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-6. doi: 10.1126/science.2321027
    [2] José A. Feijó, Moreno N Imaging plant cells by two-photon excitation[J]. Protoplasma, 2004, 223(1): 1-32. doi: 10.1007/s00709-003-0026-2
    [3] Sun CK, Chu SW, Chen IS, et al. Multi-modality non-linear microscopy[C]. Lasers and Electro-Optics, 2001. Summaries of papers presented at the Conference on IEEE, 2001.
    [4] Ma Y, Shaik MA, Kim SH, et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches[J]. Philosoph Transact Royal Society Biolog Sci, 2016, 371(1705): 20150360-71. doi: 10.1098/rstb.2015.0360
    [5] Grutzendler J, Gan WB. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain[J]. Neurorx, 2006, 3(4): 489-96. doi: 10.1016/j.nurx.2006.07.005
    [6] Sorbara CD, Wagner NE, Ladwig A, et al. Pervasive axonal transport deficits in multiple sclerosis models[J]. Neuron, 2014, 84(6): 1183-90. doi: 10.1016/j.neuron.2014.11.006
    [7] Karsten K, Raphael AP, Lin L, et al. Applications of multiphoton tomographs and femtosecond laser nanoprocessing microscopes in drug delivery research[J]. Adv Drug Delivery Rev, 2011, 63(45): 388-404.
    [8] Oheim M, Michael DJ, Geisbauer M, et al. Principles of two-photon excitation fluorescence microscopy and other non-linear imaging approaches[J]. Adv Drug Deliv Rev, 2006, 58(9): 788-808.
    [9] Niesner R, Andresen V, Neumann J, et al. The power of single and multibeam two-photon microscopy for high-resolution and high- speed deep tissue and intravital imaging[J]. Biophys J, 2007, 93(7): 2519-29. doi: 10.1529/biophysj.106.102459
    [10] Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier[J]. Opt Lett, 2003, 28(12): 1022-4. doi: 10.1364/OL.28.001022
    [11] Chung K, Deisseroth K. Clarity for mapping the nervous system[J]. Nature Methods, 2013, 10(6): 508-13. doi: 10.1038/nmeth.2481
    [12] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnol, 2001, 19(7): 631-5. doi: 10.1038/90228
    [13] Debarbieux F, Audinat E, Charpak S. Action potential propagation in dendrites of rat mitral cells in vivo[J]. J Neuroscienc Official Society Neuroscience, 2003, 23(13): 5553-64. doi: 10.1523/JNEUROSCI.23-13-05553.2003
    [14] Agarwal A, Coleno M L, Wallace VP, et al. Two-Photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue[J]. Tissue Engineer, 2001, 7(2): 191-202. doi: 10.1089/107632701300062813
    [15] Lippitz M, Erker W, Decker H, et al. Two-photon excitation microscopy of tryptophan-containing proteins[J]. Proceed National Academy Sci, 2002, 99(5): 2772-7. doi: 10.1073/pnas.052662999
    [16] Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein[J]. Biophysical J, 2002, 82(5): 2811-25. doi: 10.1016/S0006-3495(02)75621-X
    [17] Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation[J]. Proceed National Academy Sci, 2003, 100(12): 7075-80. doi: 10.1073/pnas.0832308100
    [18] Kwan AC, Duff K, Gouras GK, et al. Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation[J]. Optics Express, 2009, 17(5): 3679-89. doi: 10.1364/OE.17.003679
    [19] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263(5148): 802-5. doi: 10.1126/science.8303295
    [20] Kawakami K. Transposon tools and methods in zebrafish[J]. Developmental Dynamics, 2005, 234(2): 244-54. doi: 10.1002/dvdy.20516
    [21] Szalay G, Judák, Linda, Katona G, et al. Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals[J]. Neuron, 2016, S089(62): 7316307036-47.
    [22] Ji N, Freeman J, Smith S L. Technologies for imaging neural activity in large volumes[J]. Nature Neuroscience, 2016, 19(9): 1154-64. doi: 10.1038/nn.4358
    [23] Yang W, Yuste R. In vivo imaging of neural activity[J]. Nature Methods, 2017, 14(4): 349-359. doi: 10.1038/nmeth.4230
    [24] Renninger SL, Orger MB. Two-photon imaging of neural population activity in zebrafish[J]. Methods, 2013, 62(3): 255-267. doi: 10.1016/j.ymeth.2013.05.016
    [25] Akassoglou K, Merlini M, Rafalski V A, et al. In vivo imaging of CNS injury and disease[J]. J Neurosci, 2017, 37(45): 10808-16. doi: 10.1523/JNEUROSCI.1826-17.2017
    [26] Brennand KJ, Simone A, Jou J, et al. Modelling schizophrenia using human induced pluripotent stem cells[J]. Nature, 2011, 473(7346): 221-5. doi: 10.1038/nature09915
    [27] Shcheglovitov A, Shcheglovitova O, Yazawa M, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients[J]. Nature, 2013, 503(7475): 267-71. doi: 10.1038/nature12618
    [28] Wen Z, Nguyen H, Guo Z, et al. Synaptic dysregulation in a human iPS cell model of mental disorders[J]. Nature, 2014, 515(6): 414-8.
    [29] Espuny CI, Michelsen KA, Gall D, et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo[J]. Neuron, 2013, 77(3): 440-56. doi: 10.1016/j.neuron.2012.12.011
    [30] Korecka JA, Levy S, Isacson O. In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells[J]. Molecul Cellul Neurosci, 2015, 73(1): 3-12.
    [31] Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, el al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells[J]. Neuron, 2015, 85(11): 982-97.
    [32] Falkner S, Grade S, Dimou L, et al. Transplanted embryonic neurons integrate into adult neocortical circuits[J]. Nature, 2016, 89(13): 1601-22.
    [33] Haissam AS, Zouein FA, Ahmed EY, et al. The march of pluripotent stem cells in cardiovascular regenerative medicine[J]. Stem Cell Res Therapy, 2018, 9(1): 201-12. doi: 10.1186/s13287-018-0947-5
    [34] Lu XL, Rubart M. Micron-scale voltage and[Ca2+]i imaging in the intact heart[J]. Front Physiol, 2014, 5(3): 309-20.
    [35] Rubart M, Wang E, Dunn KW, et al. Two-photon molecular excitation imaging of Ca2+ transients in langendorff-perfused mouse hearts[J]. Cell Physiol, 2003, 284(6): C1654-68. doi: 10.1152/ajpcell.00469.2002
    [36] Tao W, Soonpaa MH, Field LJ, et al. Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy[J]. Pediatr Cardiol, 2012, 33(6): 929-37. doi: 10.1007/s00246-012-0314-8
    [37] Rubart M, Tao W, Lu XL, et al. Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart[J]. Cardiovascul Res, 2017, 57(19): 2108-19.
    [38] Jones JS, Small DM, Nozomi N. In vivo calcium imaging of cardiomyocytes in the beating mouse heart with multiphoton microscopy[J]. Front Physiol, 2018, 9(12): 969-80.
    [39] Heazlewood SY, Oteiza A, Cao H, et al. Analyzing hematopoietic stem cell homing, lodgment, and engraftment to better understand the bone marrow niche[J]. Annals New York Acad Sci, 2014, 1310(1): 119-28. doi: 10.1111/nyas.12329
    [40] Barrett O, Sottocornola R, Celso CL. In vivo imaging of hematopoietic stem cells in the bone marrow niche[M]. Humana Press: Progenitor Cells, 2012.
    [41] Scott MK, Akinduro O, Lo Celso C. In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow[J]. J Visual Exper, 2014, 91(12): e51683-94.
    [42] Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML[J]. Cell Stem Cell, 2017, 22(1): 64-77.
    [43] Miller MA, Weissleder R. Imaging of anticancer drug action in single cells[J]. Nature Rev Cancer, 2017, 17(7): 399-414. doi: 10.1038/nrc.2017.41
    [44] Shimura T, Tanaka K, Toiyama Y, et al. In vivo optical pathology of paclitaxel efficacy on the peritoneal metastatic xenograft model of gastric cancer using two-photon laser scanning microscopy[J]. Gastric Cancer, 2015, 18(1): 109-18. doi: 10.1007/s10120-013-0334-y
    [45] Tanaka, Ko J. In vivo real-time imaging of chemotherapy response on the liver metastatic tumor microenvironment using multiphoton microscopy[J]. Oncol Reports, 2012, 28(5): 1822-30. doi: 10.3892/or.2012.1983
  • 加载中
图(4)
计量
  • 文章访问数:  1091
  • HTML全文浏览量:  419
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日