Research progress of radiomics in lymph node metastasis of breast cancer
-
摘要: 乳腺癌是全世界女性中最为常见的恶性肿瘤之一,发病率正逐年递增,严重威胁女性健康。淋巴结转移是乳腺癌预后的重要指标,传统影像学检查方法在乳腺癌患者淋巴结转移状态的术前评估方面仍存在很大挑战,影像组学作为一种高通量提取特征的新技术,可提取图像深层次信息并用于建立临床诊断、预后和预测模型,在临床诊疗中得到了广泛应用和研究。目前,基于MRI、超声和钼靶的影像组学技术已逐步开始应用于乳腺癌淋巴结转移的预测,成为学术研究的一大热点。本文介绍了影像组学的定义、工作流程,并对影像组学在乳腺癌淋巴结转移的研究进展进行综述,分别从基于MRI的和非MRI影像的影像组学两方面展开分析,影像组学有望为乳腺癌患者的个体化精准诊疗提供可靠依据。Abstract: Breast cancer is one of the most common malignant tumors among women throughout the world. Its incidence is increasing year by year, which is a serious threat to women's health. Lymph node metastasis is an important prognostic indicator in breast cancer. The traditional methods of imaging still have great challenges in the preoperative evaluation of lymph node metastasis status in breast cancer patients. As a new high-throughput feature extraction technology, radiomics can extract deep information of images and use it to establish clinical diagnosis, prognosis and prediction models. Radiomics has been widely used and studied in clinical diagnosis and therapy. At present, radiomics based on MRI, ultrasound and mammography have gradually been applied to the prediction of breast cancer lymph node metastasis, and has become a hot topic in academic research. This article reviews the definition and workflow of radiomics, then reviews the research progress of radiomics in breast cancer lymph node metastasis.
-
Key words:
- breast cancer /
- lymph node metastasis /
- radiomics /
- magnetic resonance imaging /
- prediction /
- research progress
-
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. Cancer J Clin, 2018, 69(1): 7-34. [2] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. Cancer J Clin, 2016, 66(2): 115-32. doi: 10.3322/caac.21338 [3] Amin MB, Edge S, Greene F, et al. AJCC Cancer Staging Manual[M]. 8th. New York: Springer International Publishing, 2016. [4] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-6. doi: 10.1016/j.ejca.2011.11.036 [5] Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-62. doi: 10.1038/nrclinonc.2017.141 [6] Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2): 127-57. [7] 吴佩琪, 刘再毅, 何兰, 等. 影像组学与大数据结合的研究现状[J]. 中华放射学杂志, 2017, 51(7): 554-8. doi: 10.3760/cma.j.issn.1005-1201.2017.07.023 [8] Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-48. doi: 10.1016/j.mri.2012.06.010 [9] Wallner J, Schwaiger M, Hochegger K, et al. A review on multiplatform evaluations of semi-automatic open-source based image segmentation for cranio-maxillofacial surgery[J]. Comput Methods Programs Biomed, 2019, 182(7): 105102-13. [10] Titano J J, Badgeley M, Schefflein J, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events[J]. Nat Med, 2018, 24(9): 1337-41. doi: 10.1038/s41591-018-0147-y [11] Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(4): 279-88. doi: 10.1016/j.jormas.2019.06.002 [12] Cheny Z, Fuy Y, Zhang Y, et al. Multi-level semantic feature augmentation for one-shot learning[J]. IEEE Trans Image Process, 2019, 75(12): 1502-13. [13] Lian MJ, Huang CL. Texture feature extraction of gray-level co-occurrence matrix for metastatic cancer cells using scanned laser pico-projection images[J]. Lasers Med Sci, 2019, 34(7): 1503-8. doi: 10.1007/s10103-018-2595-5 [14] Shinde A, Rahulkar A, Patil C. Content based medical image retrieval based on new efficient local neighborhood wavelet feature descriptor[J]. Biomed Eng Lett, 2019, 9(3): 387-94. doi: 10.1007/s13534-019-00112-0 [15] Chunmei X, Mei H, Yan Z, et al. Diagnostic method of liver cirrhosis based on MR image texture feature extraction and classification algorithm[J]. J Med Syst, 2019, 44(1): 11-23. [16] Merisaari H, Taimen P, Shiradkar R, et al. Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer[J]. Magn Reson Med, 2019, 61(3): 350-61. [17] Xu L, Yang P, Liang W, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma[J]. Theranostics, 2019, 9(18): 5374-85. doi: 10.7150/thno.34149 [18] Parmar C, Grossmann P, Rietveld D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer[J]. Front Oncol, 2015, 5(2): 272-83. [19] Wang H, Song B, Ye N, et al. Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma[J]. Eur J Radiol, 2019, 122(15): 108755-67. [20] Wang H, Chen H, Duan S, et al. Radiomics and machine learning with multiparametric preoperative MRI may accurately predict the histopathological grades of soft tissue sarcomas[J]. J Magn Reson Imaging, 2019, 49(7): 808-19. [21] Ma X, Shen F, Jia Y, et al. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features[J]. BMC Med Imaging, 2019, 19(1): 86-97. doi: 10.1186/s12880-019-0392-7 [22] Camarrone F, van Hulle MM. Fast multiway partial least squares regression[J]. IEEE Trans Biomed Eng, 2019, 66(2): 433-43. doi: 10.1109/TBME.2018.2847404 [23] Yang C, Huang M, Li S, et al. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extrahepatic cholangiocarcinoma[J]. Cancer Lett, 2019, 52(3): 410-21. [24] Caixinha M, Nunes S. Machine learning techniques in clinical vision sciences[J]. Curr Eye Res, 2017, 42(1): 1-15. doi: 10.1080/02713683.2016.1175019 [25] Zhao M, Tang Y, Kim H, et al. Machine learning with k-means dimensional reduction for predicting survival outcomes in patients with breast cancer[J]. Cancer Inform, 2018, 17(9): 18844107-19. [26] 吴佩琪, 刘春玲, 刘再毅, 等. 钼靶、CT与DCE-MRI评价乳腺癌淋巴结转移的价值[J]. 南方医科大学学报, 2016, 36(4): 493-9. doi: 10.3969/j.issn.1673-4254.2016.04.009 [27] 杨 亦, 姚 钰, 刘家伟, 等. 多种影像学手段评估乳腺癌患者腋窝淋巴结状态的对比研究[J]. 南京医科大学学报:自然科学版, 2019, 39(5): 721-6. [28] 单嫣娜, 龚向阳, 丁忠祥, 等. 动态增强MRI影像组学特征预测乳腺癌腋窝淋巴结转移的价值[J]. 中华放射学杂志, 2019, 53(9): 742-7. doi: 10.3760/cma.j.issn.1005-1201.2019.09.006 [29] Cui X, Wang N, Zhao Y, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI[J]. Sci Rep, 2019, 9(1): 2240-51. doi: 10.1038/s41598-019-38502-0 [30] Han L, Zhu Y, Liu Z, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29(7): 3820-9. doi: 10.1007/s00330-018-5981-2 [31] Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(2): 582-91. doi: 10.1007/s00330-017-5005-7 [32] Liu J, Sun D, Chen L, et al. Radiomics Analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J]. Front Oncol, 2019, 9(10): 980-91. [33] Liu C, Ding J, Spuhler K, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(1): 131-40. doi: 10.1002/jmri.26224 [34] Yu FH, Wang JX, Ye XH, et al. Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer[J]. Eur J Radiol, 2019, 119(12): 108658-69. [35] Zhou LQ, Wu XL, Huang SY, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2019, 61(9): 190372-83. [36] Yang J, Wang T, Yang L, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method[J]. Sci Rep, 2019, 9(1): 4429-40. doi: 10.1038/s41598-019-40831-z
点击查看大图
计量
- 文章访问数: 831
- HTML全文浏览量: 454
- PDF下载量: 35
- 被引次数: 0