留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

脂肪酸代谢在恶性肿瘤发生机制及分子影像中的应用

刘畅 张一帆

刘畅, 张一帆. 脂肪酸代谢在恶性肿瘤发生机制及分子影像中的应用[J]. 分子影像学杂志, 2020, 43(1): 16-19. doi: 10.12122/j.issn.1674-4500.2020.01.04
引用本文: 刘畅, 张一帆. 脂肪酸代谢在恶性肿瘤发生机制及分子影像中的应用[J]. 分子影像学杂志, 2020, 43(1): 16-19. doi: 10.12122/j.issn.1674-4500.2020.01.04
Chang LIU, Yifan ZHANG. Appliaction of fatty acid metabolism in occurrence and molecular imaging of malignant tumors[J]. Journal of Molecular Imaging, 2020, 43(1): 16-19. doi: 10.12122/j.issn.1674-4500.2020.01.04
Citation: Chang LIU, Yifan ZHANG. Appliaction of fatty acid metabolism in occurrence and molecular imaging of malignant tumors[J]. Journal of Molecular Imaging, 2020, 43(1): 16-19. doi: 10.12122/j.issn.1674-4500.2020.01.04

脂肪酸代谢在恶性肿瘤发生机制及分子影像中的应用

doi: 10.12122/j.issn.1674-4500.2020.01.04
基金项目: 国家自然科学基金(81671720,81971644)
详细信息
    作者简介:

    刘畅:刘 畅,博士研究生,E-mail:c494547843@126.com

    通讯作者:

    张一帆,博士,主任医师,E-mail:zhang_yifan@126.com

Appliaction of fatty acid metabolism in occurrence and molecular imaging of malignant tumors

  • 摘要: 恶性肿瘤的增殖需要多种能量物质包括糖、脂肪和蛋白质。代谢重编程为恶性肿瘤提供能量,促进肿瘤的发生发展。沃伯格效应被认为是肿瘤代谢的主要方式,在这个过程中葡萄糖利用增加,为肿瘤代谢提供能量;利用此特性18F-FDG显像因能准确反应肿瘤生物学特征、位置、进展和对治疗的反应,PET等分子影像已广泛应用于肿瘤诊断和治疗并发挥不可替代作用。此外,肿瘤还需要脂肪酸代谢产物调控蛋白质翻译后修饰,提供脂质信号分子及膜磷脂以抵抗化疗药物的作用等。利用肿瘤细胞脂肪酸合成增加这一特性,放射性核素标记短链脂肪酸可用于肿瘤显像。本文对肿瘤脂肪酸代谢及其分子影像学相关研究做一综述。

     

  • [1] Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47. doi: 10.1016/j.cmet.2015.12.006
    [2] Phannasil P, Thuwajit C, Warnnissorn M, et al. Pyruvate carboxylase is up-regulated in breast cancer and essential to support growth and invasion of MDA-MB-231 cells[J]. PLoS One, 2015, 10(6): e0129848. doi: 10.1371/journal.pone.0129848
    [3] Urata K, Kajihara I, Miyauchi H, et al. The Warburg effect and tumour immune microenvironment in extramammary Paget's disease: overexpression of lactate dehydrogenase a correlates with immune resistance[J]. J Eur Acad Dermatol Venereol, 2019, 12: e16145-56.
    [4] Kitazawa M, Hatta T, Sasaki Y, et al. Promotion of the Warburg effect is associated with poor benefit from adjuvant chemotherapy in colorectal cancer[J]. Cancer Sci, 2020, 111(2): 658-66. doi: 10.1111/cas.14275
    [5] Annibaldi A, Widmann C. Glucose metabolism in cancer cells[J]. Curr Opin Clin Nutr Metab Care, 2010, 13(4): 466-70. doi: 10.1097/MCO.0b013e32833a5577
    [6] Senga S, Kobayashi N, Kawaguchi K, et al. Fatty acid-binding protein 5(FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(9): 1057-67. doi: 10.1016/j.bbalip.2018.06.010
    [7] Buckley D, Duke G, Heuer TS, et al. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target[J]. Pharmacol Ther, 2017, 177: 23-31. doi: 10.1016/j.pharmthera.2017.02.021
    [8] Uddin S, Siraj AK, Al-Rasheed M, et al. Fatty acid synthase and AKT pathway signaling in a subset of papillary thyroid cancers[J]. J Clin Endocrinol Metab, 2008, 93(10): 4088-97. doi: 10.1210/jc.2008-0503
    [9] Friedenreich CM. Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms[J]. Recent Results Cancer Res, 2011, 188: 125-39.
    [10] Pan H, Gray R, Braybrooke J, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years[J]. N Engl J Med, 2017, 377(19): 1836-46. doi: 10.1056/NEJMoa1701830
    [11] Goswami S, Sharma-Walia N. Crosstalk between osteoprotegerin (OPG), fatty acid synthase (FASN) and, cycloxygenase-2(COX-2) in breast cancer: implications in carcinogenesis[J]. Oncotarget, 2016, 7(37): 58953-74.
    [12] Zhou L, Jiang SF, Fu Q, et al. FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration[J]. Oncol Rep, 2016, 35(5): 2715-22. doi: 10.3892/or.2016.4627
    [13] Wilmanski T, Buhman K, Donkin SS, et al. 1α, 25-dihydroxyvitamin D inhibits de novo fatty acid synthesis and lipid accumulation in metastatic breast cancer cells through down-regulation of pyruvate carboxylase[J]. J Nutr Biochem, 2017, 40: 194-200. doi: 10.1016/j.jnutbio.2016.11.006
    [14] Rossi S, Graner E, Febbo P, et al. Fatty acid synthase molecular signatures expression defines distinct in prostate cancer[J]. Mol Cancer Res, 2003, 1(10): 707-15.
    [15] Wu X, Serrano MA, Zou Y, et al. Abstract 2124: non-homologues end joining mediates fatty acid synthase(FASN)-associated resistance to DNA-damaging chemotherapeutics[J]. Cancer Res, 2012, 72(11): 1305-16.
    [16] Xiao RJ, Su Y, Simmen RCM, et al. Dietary soy protein inhibits DNA damage and cell survival of colon epithelial cells through attenuated expression of fatty acid synthase[J]. Am J Physiol - Gastrointest Liver Physiol, 2008, 294(4): G868-76. doi: 10.1152/ajpgi.00515.2007
    [17] Kao YC, Lee SW, Lin LC, et al. Fatty acid synthase overexpression confers an independent prognosticator and associates with radiation resistance in nasopharyngeal carcinoma[J]. Tumour Biol, 2013, 34(2): 759-68. doi: 10.1007/s13277-012-0605-y
    [18] Li JB, Huang QC, Long XY, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways[J]. J Hepatol, 2015, 63(6): 1378-89. doi: 10.1016/j.jhep.2015.07.039
    [19] Guo DL, Bell EH, Mischel P, et al. Targeting SREBP-1-driven lipid metabolism to treat cancer[J]. Curr Pharm Des, 2014, 20(15): 2619-26. doi: 10.2174/13816128113199990486
    [20] Tang X, Guo N, Xu LX, et al. CD147/EMMPRIN: an effective therapeutic target for hepatocellular carcinoma[J]. J Drug Target, 2013, 21(3): 224-31. doi: 10.3109/1061186X.2012.702769
    [21] Hapala I, Marza E, Ferreira T. Is fat so bad? Modulation of endoplasmic Reticulum stress by lipid droplet formation[J]. Biol Cell, 2011, 103(6): 271-85. doi: 10.1042/BC20100144
    [22] Ramapriyan R, Caetano MS, Barsoumian HB, et al. Altered cancer metabolism in mechanisms of immunotherapy resistance[J]. Pharmacol Ther, 2019, 195: 162-71. doi: 10.1016/j.pharmthera.2018.11.004
    [23] Cappel D, Deja S, Fu XR, et al. Pyruvate carboxylase is required for hepatic gluconeogenesis and TCA cycle function[J]. Diabetes, 2018, 67(Supplement 1): 1882-9. doi: 10.2337/db18-1882-P
    [24] Zhao S, Torres A, Henry RA, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch[J]. Cell Rep, 2016, 17(4): 1037-52. doi: 10.1016/j.celrep.2016.09.069
    [25] Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10): 1108-19. doi: 10.1038/nm.4181
    [26] Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets, 2017, 21(11): 1001-16. doi: 10.1080/14728222.2017.1381087
    [27] Yoshii Y, Furukawa T, Saga T, et al. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application[J]. Cancer Lett, 2015, 356(2 Pt A): 211-6.
    [28] Yang Y, Morin PJ, Han WF, et al. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c[J]. Exp Cell Res, 2003, 282(2): 132-7. doi: 10.1016/S0014-4827(02)00023-X
    [29] Shimomura I, Shimano H, Horton JD, et al. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells[J]. J Clin Invest, 1997, 99(5): 838-45. doi: 10.1172/JCI119247
    [30] Lu CX, Jiang QF, Hu MJ, et al. Preliminary biological evaluation of 18F-AlF-NOTA-MAL-Cys-Annexin V as a novel apoptosis imaging agent[J]. Oncotarget, 2017, 8(31): 51086-95.
    [31] Finessi M, Bisi G, Deandreis D. Hyperglycemia and 18F-FDG PET/CT, issues and problem solving: a literature review[J]. Acta Diabetol, 2020, 57(3): 253-62. doi: 10.1007/s00592-019-01385-8
    [32] Imai M, Kosaka Y, Tachi M, et al. Does delayed image of myocardial fatty acid metabolism SPECT predict prognosis[J]. J Nucl Med, 2019, 60: 313-4.
    [33] Kero T, Rosengren S, Lubberink M, et al. PET in cardiac amyloidosis - altered resting biventricular MBF measured with 11C-acetate is a strong indicator of disease severity[J]. Eur J Nucl Med Mol I, 2012, 39: s179-87.
    [34] Derlin T, Weiberg D, Sohns JM. Multitracer molecular imaging of Paget disease targeting bone remodeling, fatty acid metabolism, and PSMA expression on PET/CT[J]. Clin Nucl Med, 2016, 41(12): 991-2. doi: 10.1097/RLU.0000000000001413
    [35] Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress[J]. Cancer Cell, 2015, 27(1): 57-71. doi: 10.1016/j.ccell.2014.12.002
    [36] Malkowski B, Pankowska V, Malkowski B, et al. Predictive value of 11C-Acetate PET-CT in metastatic renal cell carcinoma[J]. Eur J Nucl Med Mol, 2017, 34(15): e16088-96.
    [37] Regulal NK, Lubberink M, Jorulf H, et al. Dynamic imaging of prostate cancer with 11C-acetate PET/CT[J]. J Nucl Med, 2017, 58(s1): 662-73.
    [38] Zieba R. 11C-Acetate advantage over 18F-FDG in PET imaging of prostate cancer[J]. J Nucl Med, 2016, 57(s2): 2817-26.
    [39] Regula N, Häggman M, Johansson S, et al. Malignant lipogenesis defined by 11C-acetate PET/CT predicts prostate cancer-specific survival in patients with biochemical relapse after prostatectomy[J]. Eur J Nucl Med Mol Imaging, 2016, 43(12): 2131-8. doi: 10.1007/s00259-016-3449-7
    [40] Kang SC, Park HH, Kim JY, et al. Comparison of one-day and two-day protocol of 11C-Acetate and 18F-FDG scan in hepatoma[J]. J Nucl Med, 2010, 51(s1): 903-14.
    [41] Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: a review[J]. J Hepatocell Carcinoma, 2016, 3(1): 41-53.
    [42] Deford-Watts LM, Mintz A, Kridel SJ. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors[J]. Curr Pharm Biotechnol, 2013, 14(3): 300-12. doi: 10.2174/1389201011314030006
    [43] Zhao J, Zhang ZW, Nie DH, et al. PET imaging of hepatocellular carcinomas: 18F-fluoropropionic acid as a complementary radiotracer for 18F-fluorodeoxyglucose[J]. Mol Imaging, 2019, 18(7): 1032-41.
    [44] Wang HL, Tang GH, Hu KZ, et al. Comparison of three short fatty acid probes and 18F-FDG for differentiation tumor from inflammation in mice[J]. J Nuclear Med, 2014, 55(6): 190-201.
    [45] Witney TH, Pisaneschi F, Alam IS, et al. Preclinical evaluation of 3-18F-fluoro-2, 2-dimethylpropionic acid as an imaging agent for tumor detection[J]. J Nucl Med, 2014, 55(9): 1506-12. doi: 10.2967/jnumed.114.140343
    [46] Chakravarty B, Gu ZW, Chirala SS, et al. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain[J]. Proc Natl Acad Sci USA, 2004, 101(44): 15567-72. doi: 10.1073/pnas.0406901101
    [47] Guo CB, Cui NH, Yu GY, et al. Effects of cerulenin on the endogenous fatty acid synthetic activity in squamous cell carcinoma of the oral cavity[J]. J Oral Maxillofac Surg, 2003, 61(8): 909-12. doi: 10.1016/S0278-2391(03)00237-4
    [48] Menendez JA, Vellon L, Mehmi I, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells[J]. Proc Natl Acad Sci USA, 2004, 101(29): 10715-20. doi: 10.1073/pnas.0403390101
    [49] Price AC, Choi KH, Heath RJ, et al. Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism[J]. J Biol Chem, 2001, 276(9): 6551-9. doi: 10.1074/jbc.M007101200
    [50] Pizer ES, Jackisch C, Wood FD, et al. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells[J]. Cancer Res, 1996, 56(12): 2745-7.
    [51] Murata S, Yanagisawa K, Fukunaga K, et al. Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice[J]. Cancer Sci, 2010, 101(8): 1861-5. doi: 10.1111/j.1349-7006.2010.01596.x
    [52] Alli PM, Pinn ML, Jaffee EM, et al. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice[J]. Oncogene, 2005, 24(1): 39-46. doi: 10.1038/sj.onc.1208174
    [53] Guseva NV, Rokhlin OW, Glover RA, et al. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status[J]. Cancer Biol Ther, 2011, 12(1): 80-5. doi: 10.4161/cbt.12.1.15721
    [54] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18(2): 153-61. doi: 10.1016/j.cmet.2013.05.017
    [55] Huang LH, Chung HY, Su HM. Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line[J]. BMC Cancer, 2017, 17(1): 890-8. doi: 10.1186/s12885-017-3936-7
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  402
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-10
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回