Research progress of six imaging diagnosis for dense breasts
-
摘要: 乳腺癌居于我国女性恶性肿瘤发病的首位,严重危害女性健康。致密型乳腺是乳腺癌的风险因素之一。在致密型乳腺中早期发现、早期诊断乳腺癌非常重要。乳腺X线摄影因受组织重叠、致密腺体遮盖等影响,对致密型乳腺病变检出存在一定局限性。近年来不断发展的功能成像技术,如动态对比增强磁共振成像、弥散加权成像、正电子发射计算机断层显像、乳腺专用伽马成像,通过反映肿瘤血流动力和代谢的变化从而提高致密型乳腺病变的检出。同时,新兴的光声成像技术能提供生物组织结构信息与功能信息,在深层组织中空间分辨率高,其在乳腺疾病中的应用逐渐受到重视。本文对数字乳腺三维断层摄影、超声检查、MRI检查、PET/CT检查、BSGI检查及光声成像等几种影像学检查方法在致密型乳腺诊断中的应用进行综述,为临床医生对致密型乳腺疾病的早期诊断提供帮助。Abstract: In China, breast cancer has become the first female malignant tumor, which seriously endangers women’s health. The dense breast is one of the risk factors for breast cancer. It’s crucial to detect and diagnose breast cancer early in the dense breast. On account of the overlap of the tissues and the covering of dense glands, mammography has certain restrictions in the examination of dense breasts. Recently, the functional imaging techniquesenhance the checkout of lesions, such as DCE-MRI, DWI, positron emission computed tomography, and breast specific-gamma imaging. It could reflect the changes of tumor hemodynamics and metabolism. The emerging photoacoustic imaging (PAI) has developed significantly in breast diseases. It provides structural and functional information of biological tissuesand high spatial resolution in deeper tissue imaging. This paper summarizes various examinations including DBT, ultrasonic examination, MRI, PET/CT, BSGI and PAI, prompting clinicians with early diagnosis of dense breast diseases.
-
Key words:
- dense breasts /
- imaging diagnosis /
- molecular imaging
-
[1] Dubey AK, Gupta U, Jain S. Breast cancer statistics and prediction methodology: a systematic review and analysis[J]. Asian Pac J Cancer Prev, 2015, 16(10): 4237-45. doi: 10.7314/APJCP.2015.16.10.4237 [2] 王维琼. 2016年中国恶性肿瘤发病和死亡分析[J]. 临床医药文献电子杂志, 2017, 4(19): 48-57. [3] Fan L, Strasserweippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15(7): e279-89. doi: 10.1016/S1470-2045(13)70567-9 [4] Ahmadinejad N, Movahedinia S, Movahedinia S, et al. Association of mammographic density with pathologic findings[J]. Iran Red Crescent Med J, 2013, 15(12): e16698-707. [5] Oeffinger KC, Fontham ET, Etzioni R, et al. Breast cancer screening for women at average risk: 2015 guideline update from the american cancer society[J]. JAMA, 2015, 314(15): 1599-614. doi: 10.1001/jama.2015.12783 [6] Ng KH, Lau S. Vision 20/20: mammographic breast density and its clinical applications[J]. Med Phys, 2015, 42(12): 7059-77. doi: 10.1118/1.4935141 [7] Li K, Tjhoi W, Shou C, et al. Multiple gastrointestinal stromal tumors: analysis of clinicopathologic characteristics and prognosis of 20 patients[J]. Cancer Manag Res, 2019, 8(11): 7031-8. [8] Sharpe RE, Venkataraman S, Phillips J, et al. Increased cancer detection rate and variations in the recall rate resulting from implementation of 3D digital breast tomosynthesis into a population-based screening program[J]. Radiology, 2016, 278(3): 698-706. doi: 10.1148/radiol.2015142036 [9] Zackrisson S, Lång K, Rosso A, et al. One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study[J]. Lancet Oncol, 2018, 19(11): 1493-503. doi: 10.1016/S1470-2045(18)30521-7 [10] Conant EF, Beaber EF, Sprague BL, et al. Breast cancer screening using tomosynthesis in combination with digital mammography compared to digital mammography alone: a cohort study within the PROSPR consortium[J]. Breast Cancer Res Treat, 2016, 156(1): 109-16. doi: 10.1007/s10549-016-3695-1 [11] Singla D, Chaturvedi A K, Aggarwal A, et al. Comparing the diagnostic efficacy of full field digital mammography with digital breast tomosynthesis using BIRADS score in a tertiary cancer care hospital[J]. Indian J Radiol Imaging, 2018, 28(1): 115-22. doi: 10.4103/ijri.IJRI_107_17 [12] Mohindra N, Neyaz Z, Agrawal V, et al. Impact of addition of digital breast tomosynthesis to digital mammography in lesion characterization in breast cancer patients[J]. Int J Appl Basic Med Res, 2018, 8(1): 33-7. doi: 10.4103/ijabmr.IJABMR_372_16 [13] Krammer J, Stepniewski K, Kaiser CG, et al. Value of additional digital breast tomosynthesis for preoperative staging of breast cancer in dense breasts[J]. Anticancer Res, 2017, 37(9): 5255-61. [14] Houssami N, Miglioretti DL. Digital breast tomosynthesis: a brave new world of mammography screening[J]. JAMA, 2016, 2(6): 725-7. [15] Tagliafico AS, Piana M, Schenone D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J]. Breast, 2019, 11(6): 74-80. [16] 李军涛, 郭旭辉, 田沛琦, 等. 数字乳腺三维断层摄影技术在乳腺可疑钙化型疾病中的诊断价值[J]. 中华普通外科杂志, 2018, 33(12): 1046-9. doi: 10.3760/cma.j.issn.1007-631X.2018.12.019 [17] 符兆海, 卢伊玲. 高频彩色多普勒超声、超声弹性成像在乳腺癌诊断中应用效果比较[J]. 影像研究与医学应用, 2018, 2(22): 241-3. doi: 10.3969/j.issn.2096-3807.2018.22.165 [18] 陈文静, 牟伟, 张文馨, 等. 平扫T2脂肪抑制序列图像纹理可提高诊断乳腺良恶性结节的准确率[J]. 分子影像学杂志, 2019, 42(14): 453-6. doi: 10.12122/j.issn.1674-4500.2019.04.07 [19] Sharma U, Sah RG, Agarwal K, et al. Potential of diffusion-weighted imaging in the characterization of malignant, benign, and healthy breast tissues and molecular subtypes of breast cancer[J]. Front Oncol, 2016, 126(6): 138-49. [20] Yoon H, Yoon D, Yun M, et al. Metabolomics of breast cancer using high-resolution magic angle spinning magnetic resonance spectroscopy: correlations with 18F-FDG positron emission tomography-computed tomography, dynamic contrast-enhanced and diffusion-weighted imaging MRI[J]. PloS one, 2016, 11(7): e0159949-65. doi: 10.1371/journal.pone.0159949 [21] Kiz Yİ, ARSLAN G, ÖZTüRK E, et al. Diffusion weighted MR imaging of breast and correlation of prognostic factors in breast cancer[J]. Balkan Med J, 2016, 33(3): 301-7. doi: 10.5152/balkanmedj.2016.140555 [22] Kuhl CK, Schrading S, Strobel K, et al. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI[J]. J Clin Oncol, 2014, 32(22): 2304-10. doi: 10.1200/JCO.2013.52.5386 [23] Morris EA. Rethinking breast cancer screening: ultra FAST breast magnetic resonance imaging[J]. J Clin Oncol, 2014, 32(22): 2281-3. doi: 10.1200/JCO.2014.56.1514 [24] 郭定波, 陈暇女, 欧芳元, 等. 动态增强MRI及~1H-MRS诊断乳腺癌: meta分析[J]. 中国医学影像技术, 2019, 35(03): 56-60. [25] 吴佩琪, 刘春玲, 刘再毅, 等. 钼靶、CT与DCE-MRI评价乳腺癌淋巴结转移的价值[J]. 南方医科大学学报, 2016, 36(4): 493-9. [26] 胡 瑛. PET/CT与磁共振诊断乳腺癌的结果比较[J]. 中国CT和MR杂志, 2017, 15(12): 51-3. [27] Gemignal ML, Patil S, Seshan VE, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer[J]. J Nucl Med, 2013, 54(10): 1697-702. doi: 10.2967/jnumed.112.113373 [28] 王 健, 宋秀宇, 徐文贵, 等. 乳腺癌放射性核素分子成像研究进展[J]. 国际医学放射学杂志, 2015, 39(4): 361-5. doi: 10.3874/j.issn.1674-1897.2015.04.Z0411 [29] Botsikas D, Bagetakos I, Picarra M, et al. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer[J]. Eur Radiol, 2019, 29(4): 1787-98. doi: 10.1007/s00330-018-5720-8 [30] Brem RF, Ruda RC, Yang JL, et al. Breast-specific gamma imaging for the detection of mammographically occult breast cancer in women at increased risk[J]. J Nucl Med, 2016, 57(5): 678-84. doi: 10.2967/jnumed.115.168385 [31] Rechtman L R, Lenihan M J, Lieberman J H, et al. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts[J]. AM J Roentgenol, 2014, 202(2): 293-8. doi: 10.2214/AJR.13.11585 [32] Yoo J, Kim BS, Yoon HJ. Predictive significance of breast-specific gamma imaging for upstaging core-needle biopsy-detected ductal carcinoma in situ to invasive cancer[J]. Ann Nucl Med, 2018, 32(5): 328-36. doi: 10.1007/s12149-018-1251-2 [33] Lee S J, Choi YY, Kim C, et al. Correlations between tumor to background ratio on breast-specific gamma imaging and prognostic factors in breast cancer[J]. J Korean Med Sci, 2017, 32(6): 1031-7. doi: 10.3346/jkms.2017.32.6.1031 [34] 谭 辉, 张一秋, 石洪成, 等. 核医学乳腺专用显像仪在乳腺癌诊疗中的应用[J]. 中华核医学与分子影像杂志, 2014, 34(1): 73-5. doi: 10.3760/cma.j.issn.2095-2848.2014.01.024 [35] Sun Y, Wei W, Yang HW, et al. Clinical usefulness of breast-specific gamma imaging as an adjunct;modality to mammography for diagnosis of breast cancer: a systemic;review and meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2013, 40(3): 450-63. doi: 10.1007/s00259-012-2279-5 [36] Cho MJ, Yang JH, Yu YB, et al. Validity of breast-specific gamma imaging for breast imaging reporting and data system 4 lesions on mammography and/or ultrasound[J]. Ann Surg Treat Res, 2016, 90(4): 194-200. doi: 10.4174/astr.2016.90.4.194 [37] Ong E. Preoperative imaging for breast conservation surgery-do we need more than conventional imaging for local disease assessment[J]. Gland Surg, 2018, 7(6): 554-9. doi: 10.21037/gs.2018.08.05 [38] Ji SP, Lee AY, Jung KP, et al. Diagnostic performance of breast-specific gamma imaging (BSGI) for breast cancer: usefulness of dual-phase imaging with 99m Tc-sestamibi[J]. Nucl Med Mol Imaging, 2013, 47(1): 18-26. doi: 10.1007/s13139-012-0176-2 [39] 程 茜, 钱梦騄. 多模态光声分子成像进展[J]. 应用声学, 2018, 23(05): 645-54. [40] Toi M, Asao Y, Matsumoto Y, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Sci Rep, 2017, 7(1): 41970-80. doi: 10.1038/srep41970 [41] 王 欣, 计 钟. 一体化光声乳腺成像系统[J]. 激光生物学报, 2017, 26(6): 512-6. doi: 10.3969/j.issn.1007-7146.2017.06.006
点击查看大图
计量
- 文章访问数: 909
- HTML全文浏览量: 489
- PDF下载量: 25
- 被引次数: 0