Research progress of oral barrier membrane in site preservation
-
摘要: 牙槽嵴是一种牙齿支持结构,随着牙的萌出而发育,拔牙后可发生体积和形态的改变,尤其是前牙美学区牙槽嵴吸收更明显,这可能会限制后期的种植或传统修复治疗。应用位点保存可以防止骨吸收从而减少拔牙后的骨量丢失,其中生物屏障膜在位点保存术中起着关键作用,可阻止成纤维细胞和上皮细胞向骨缺损区生长,确保骨缺损区的成骨过程不受上皮组织的干扰。本文就位点保存的意义和屏障膜的理想性能,以及屏障膜在位点保存中的临床应用等3个方面,对口腔屏障膜在位点保存术中的研究进展进行综述。Abstract: Alveolar ridge is a kind of dental support structure, which develops with the eruption of teeth. The volume and morphology can change after tooth extraction, especially the absorption of alveolar ridge in the aesthetic area of front teeth is more obvious, which may limit the later implantation or traditional restoration treatment. Application site preservation can prevent bone absorption and reduce bone loss after tooth extraction. Biological barrier membrane plays a key role in site preservation, which can prevent fibroblasts and epithelial cells from growing to the bone defect area and ensure that the bone formation process in the bone defect area is not disturbed by epithelial tissue.In this paper, the significance of site preservation, the ideal performance of the barrier membrane and the clinical application of the barrier membrane in site preservation were reviewed.
-
Key words:
- site preservation /
- barrier membrane /
- alveolar ridge /
-
[1] Yang Y, Cui FJ, Liu XQ, et al. Effect of provisional restorations with ovate pontics on preservation of the ridge after tooth extraction: case series[J]. Chin J Dent Res, 2019, 22(3): 181-8. [2] Ikumi R, Miyahara T, Akino N, et al. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model[J]. Dent Mater J, 2018, 37(6): 912-8. doi: 10.4012/dmj.2017-385 [3] Sanz-Martin I, Ferrantino L, Vignoletti F, et al. Contour changes after guided bone regeneration of large non-contained mandibular buccal bone defects using deproteinized bovine bone mineral and a porcine-derived collagen membrane: an experimental in vivo investigation[J]. Clin Oral Investig, 2018, 22(3): 1273-83. doi: 10.1007/s00784-017-2214-z [4] Parashis AO, Kalaitzakis CJ, Tatakis DN, et al. Alveolar ridge preservation using xenogeneic collagen matrix and bone allograft[J]. Int J Dent, 2014, 35(10): 172854-65. [5] Tomlin EM, Nelson SJ, Rossmann JA. Suppl 1: ridge preservation for implant therapy: a review of the literature[J]. Open Dent J, 2014, 8(47): 66-76. [6] Araujo MG, Silva CO, Misawa MA. Alveolar socket healing: what can we learn[J]. Periodontol, 2015, 68(1): 122-34. doi: 10.1111/prd.12082 [7] Iasella JM, Greenwell H, Miller RL, et al. Ridge preservation with freeze〥ried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans[J]. J Periodontol, 2003, 74(7): 990-8. doi: 10.1902/jop.2003.74.7.990 [8] Misawa MJ, Araújo MG. The alveolar process followingsingle-tooth extraction: a study of maxillary incisor and premolar sites in man[J]. Clin Oral Implants Res, 2016, 27(13): 884-9. [9] Avila-Ortiz G, Chambrone L, Vignoletti F. Effect of alveolar ridge preservation interventions following tooth extraction: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(21): 195-223. [10] Bassir SH, Alhareky M, Wangsrimongkol B, et al. Systematic review and meta-analysis of hard tissue outcomes of alveolar ridge preservation[J]. Int J Oral Maxillofac Implants, 2018, 33(5): 979-90. doi: 10.11607/jomi.6399 [11] Weng D, Stock V, Schliephake H. Are socket and ridge preservation techniques at the day of tooth extraction efficient in maintaining the tissues of the alveolar ridge? Systematic review, consensus statements and recommendations of the 1st DGI consensus conference in september 2010[J]. Eur J Oral Implantol, 2011, 4(5): 59-66. [12] Avila-Ortiz G, Elangovan S, Kramer KW, et al. Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis[J]. J Dent Res, 2014, 93(10): 950-8. doi: 10.1177/0022034514541127 [13] Benic GI, Thoma DS, Fernando M, et al. Guided boneregeneration of peri-implant defects with particulated and block x enogenic bone substitutes[J]. Clin Oral Implants Res, 2016, 37(1): 27-39. [14] Meloni SM, Jovanovic SA, Urban I, et al. Horizontal ridge augmentation using GBR with a native collagen membrane and 1:1 ratio of particulated xenograft and autologous bone: a 1-Year prospective clinical study[J]. Clin Implant Dent Relat Res, 2017, 19(2): 38-45. [15] Horváth A, Mardas N, Mezzomo LA, et al. Alveolar ridge preservation[J]. Clin Oral Investigat, 2013, 52(17): 341-63. [16] Vignoletti F, Matesanz P, Rodrigo D, et al. Surgical protocols for ridge preservation after tooth extraction[J]. Clin Oral Impl Res, 2012, 23(Suppl 5): 22-38. [17] Troiano G, Zhurakivska K, Lo Muzio L, et al. Combination of bone graft and resorbable membrane for alveolar ridge preservation: a systematic review, meta analysis and trial sequential analysis[J]. J Periodontol, 2018, 19(4): 1-17. [18] Sam G, Pillai B. Evolution of barrier membranes in periodontal regeneration-are the third generation membranes really here[J]. J Clin Diagn Res, 2014, 8(12): 5272-83. [19] Scantlebury TV. 1982-1992: a decade of technology development for guided tissue regeneration[J]. J Periodontol, 1993, 64(11 Suppl): 1129-37. [20] Gottlow J. Guided tissue regeneration using bioresorbable and non-resorbable devices: initial healing and long-term results[J]. J Periodontol, 1993, 64(11 Suppl): 1157-65. [21] Roccuzzo M, Ramieri G, Spada MC, et al. Vertical alveolar ridge augmentation by means of a Titanium mesh and autogenous bone grafts[J]. Clin Oral Implants Res, 2004, 15(1): 73-81. doi: 10.1111/j.1600-0501.2004.00998.x [22] Pinho MN, Roriz VM, Novaes AB, et al. Titanium membranes in prevention of alveolar collapse after tooth extraction[J]. Implant Dent, 2006, 15(9): 53-61. [23] Hiroshi H, Masui S, Hiroshi I, et al. Evaluation of a newly designed microperforated pure Titanium membrane for guided bone regeneration[J]. Int J Oral Maxillofac Implants, 2019, 34(12): 411-22. [24] Noel Y, NaungY, Shehata E, et al. Resorbable versus nonresorbable membranes: when and why[J]. Clin. North Am, 2019, 63(11): 419-31. [25] Sheikh Z, Abdallah MN, Hamdan N, et al. Barrier membranes for tissue regeneration and bone augmentation techniques in dentistry[M]. Pan Stanford Publishing: Handbook of Oral Biomaterials, 2014. [26] Simion M, Fontana F, Rasperini G, et al. Vertical ridge augmentation by expanded-polytetrafluo-roethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone(Bio Oss)[J]. Clin Oral Implants Res, 2010, 18(5): 620-9. [27] Canullo LP, Simion M. Vertical ridge augmentation around implants using e-PTFE titanium-reinforced membrane and deproteinized bovine bone mineral(bio-oss): a case report[J]. Intern J Periodont Restorat Dentis, 2006, 26(4): 355-67. [28] Vroom M, Gru¨ndemann L. Non-resorbable membranes[J]. Tandartspraktijk, 2014, 35(1): 8-13. doi: 10.1007/s12496-014-0003-2 [29] Carbonell JM, Martín IS, Santos A, et al. High-den-sity polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review[J]. Intern J Oral Maxill Facial Surg, 2014, 43(1): 75-84. doi: 10.1016/j.ijom.2013.05.017 [30] Barber HD, Lignelli J, Smith BM, et al. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration[J]. J Oral Maxillofac Surg, 2007, 65(4): 748-52. doi: 10.1016/j.joms.2006.10.042 [31] Rodriguez I, Selders GS, Fetz A, et al. Barrier membranes for dental applications: a review and sweet advancement in membrane developments[J]. Mouth Teeth, 2018, 2(1): 1-9. [32] Ronda M, Rebaudi A, Torelli L, et al. Expanded vs dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial[J]. Clin Oral Implants Res, 2014, 25(7): 859-66. doi: 10.1111/clr.12157 [33] Borg TD, Mealey BL. Histologic healing following tooth extraction with ridge preservation using mineralized versus combined mineralized-demineralized freeze-dried bone allograft: a randomized controlled clinical trial[J]. J Periodontol, 2015, 86(3): 348-55. doi: 10.1902/jop.2014.140483 [34] Fernandes PG, Muglia VA, Reino DM, et al. Socket preservation therapy with acellular dermal matrix and mineralized bone allograft after tooth extraction in humans: a clinical and histomorphometric study[J]. Int J Periodontics Restorative Dent, 2016, 36(2): E16-25. doi: 10.11607/prd.2307 [35] 王若琳. 载bFGF引导骨再生屏障膜对拔牙位点保存效果分析[D]. 济南: 山东大学, 2018. [36] Chu CY, Wang YF, Wang YJ, et al. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype[J]. Mater Sci Eng Mater Biol Appl, 2019, 99(5): 73-82. [37] Chu C, Deng J, Xiang L, et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67(12): 386-94. [38] Chu CY, Liu L, Wang YF, et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018, 12(6): 1499-507. doi: 10.1002/term.2687 [39] Ribeiro S, Ferreira V, Stutz B, et al. Evaluation of the Zone of keratinized tissue using exposed acellular dermal matrix over tooth extraction sites: a randomized controlled clinical trial[J]. Implant Dent, 2015, 24(2): 180-4. [40] Park CY, Kohanim S, Zhu L, et al. Immunosuppressive property ofdried humanamniotic membrane[J]. Opthalmic Res, 2009, 41(2): 112-3. doi: 10.1159/000187629 [41] Koob TJ, Lim JJ, Massee M, et al. Angiogenic properties of dehydratedhuman amnion/chorion allografts: therapeutic potential for softtissue repair and regeneration[J]. Vase Cell, 2014, 26(6): 10-21. [42] Maan ZN, Rennert RC, Koob TJ, et al. Cell recruitment by amnion choriongrafts promotes neovascularization[J]. J Surg Res, 2015, 193(2): 953-62. doi: 10.1016/j.jss.2014.08.045 [43] Cullum D, Lucas M. Minimally invasive extraction site management with dehydrated amnion/chorion membrane (dHACM): Open-Socket grafting[J]. Compend Contin Educ Dent, 2019, 40(3): 178-83. [44] Bunyaratavej P, Wang HL. Collagen membranes: a review[J]. J Periodontol, 2017, 72(2): 215-26. [45] Mally P, Avital K, Roman L, et al. Socket site preservation using bovine bone mineral with, without a bioresorbable collagen membrane[J]. Int J Periodont Restorat Dent, 2012, 69(32): 459-65. [46] Macbeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a systematic review[J]. Clin Oral Implants Res, 2017, 28(8): 982-1004. doi: 10.1111/clr.12911 [47] Mcginnis M, Larsen P, Miloro M, et al. Comparison of resorbable and nonresorbableguided bone regeneration materials: a preliminary study[J]. Int J Oral Maxillofac Implants, 1998, 13(1): 30-5. [48] Gutta R, Baker RA, Bartolucci AA, et al. Barrier membranes used for ridge a ugmentation: is there an optimal pore size[J]. J Oral Maxillofac Surg, 2009, 67(6): 1218-25. doi: 10.1016/j.joms.2008.11.022 [49] Wei Peng, Jun JX. Mg-based absorbable membrane for guided bone rege neration(GBR): a pilot study[J]. Rare Metals, 2019, 38(6): 577-87. [50] Han J, Ma BJ, Liu HR, et al. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model[J]. J Biomed Mater Res, 2018, 106(12): 3099-110. doi: 10.1002/jbm.a.36502 [51] Martin-Thome H, Bourdin D, Strube NA, et al. Clinical safety of a new synthetic resorbable dental membrane: a case series study[J]. J Oral Implantol, 2018, 44(2): 138-45. doi: 10.1563/aaid-joi-D-17-00042 [52] Zadeh HH, Abdelhamid A, Omran MA, et al. An open randomized controlled clinical trial to evaluate ridge preservation and repair using SocketKAP (TM) and SocketKAGE (TM): part 1-three-dimensional volumetric soft tissue analysis of study casts[J]. Clin Oral Implants Res, 2016, 27(6): 640-9. doi: 10.1111/clr.12714 [53] Min S, Liu Y, Tang JX, et al. Alveolar ridge dimensional changes following ridge preservation procedure with novel devices: part 1-CBCT linear analysis in non-human primate model[J]. Clin Oral Implants Res, 2016, 27(1): 97-105. doi: 10.1111/clr.12521 [54] Zhang F, Lu Q, Ming J, et al. Silk dissolution and regeneration at the nanofibril scale[J]. J Mater Chem, 2014, 35(2): 3879-91. [55] Liu Z, Zhang F, Ming J, et al. Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibrils[J]. J Appl Polym Sci, 2015, 71(8): 132-43. [56] Lu SJ, Wang P, Zhang F, et al. A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects[J]. Am J Transl Res, 2015, 7(11): 2244-53. [57] Jae, Min, Song, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis[J]. Int J Oral Sci, 2014, (2): 87-93. [58] Gentile P, Chiono V, Tonda TC, et al. Polymeric membranes for guided bone regeneration[J]. Biotechnol J, 2011, (6): 1187-97. [59] Gentile P, Ferreira AM, Callaghan JT, et al. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo[J]. Adv Healthc Mater, 2017, 6(8): 182-93. [60] Watcha N, Putson C, Pripatnanont P, et al. Layer-by-layer electrospun membranes of polyurethane/silk fibroin based on mimicking of oral soft tissue for guided bone regeneration[J]. Biomed Mater, 2019, 14(5): 1203-14. [61] Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review[J]. Open Dent J, 2014, (8): 56-67. [62] Mir-Mari J, Benic GI, Valmaseda-Castellon E, et al. Inflfluence of wound closure on the volume stability of particulate and non-particulate GBR materials: an in vitro cone-beam computed tomographic examination[J]. Part II. Clin Oral Implants Res, 2017, 28(6): 631-43. doi: 10.1111/clr.12845 [63] Xue J, He M, Niu YZ, et al. Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane[J]. Int J Pharm, 2014, 475(1/2): 566-77.
点击查看大图
计量
- 文章访问数: 1334
- HTML全文浏览量: 551
- PDF下载量: 26
- 被引次数: 0